Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

got error while running

See original GitHub issue


I’m trying to reproduce pretraining with config pretrain-tv-ht-16gpu.json

I got error messages as follows:

[1,4]<stderr>:Traceback (most recent call last):
[1,4]<stderr>:  File "", line 619, in <module>
[1,4]<stderr>:    main(args)
[1,4]<stderr>:  File "", line 175, in main
[1,4]<stderr>:    train_loaders, val_loaders = build_target_loaders(target, t_r, opts)
[1,4]<stderr>:  File "", line 59, in build_target_loaders
[1,4]<stderr>:    target['vfeat_interval'], opts)
[1,4]<stderr>:  File "/src/", line 37, in load_video_sub_dataset
[1,4]<stderr>:    if "msrvtt" in opts.tasks:
[1,4]<stderr>:AttributeError: 'Namespace' object has no attribute 'tasks'

So I printed that opts.

[1,4]<stdout>:Namespace(betas=[0.9, 0.98], checkpoint='/pretrain/pretrain-tv-init.bin', compressed_db=False, drop_svmr_prob=0.8, dropout=0.1, fp16=True, grad_norm=1.0, gradient_accumulation_steps=2, hard_neg_weights=[10], hard_negtiave_start_step=[20000], hard_pool_size=[20], img_db='/video', learning_rate=3e-05, load_partial_pretrained=True, lr_mul=1.0, lw_neg_ctx=8.0, lw_neg_q=8.0, lw_st_ed=0.01, margin=0.1, mask_prob=0.15, max_clip_len=100, max_txt_len=60, model_config='config/hero_pretrain.json', n_gpu=6, n_workers=1, num_train_steps=1650000, optim='adamw', output_dir='pt-temp', pin_mem=True, ranking_loss_type='hinge', save_steps=500, seed=77, skip_layer_loading=True, sub_ctx_len=0, targets=[{'name': 'tv', 'sub_txt_db': 'tv_subtitles.db', 'vfeat_db': 'tv', 'vfeat_interval': 1.5, 'splits': [{'name': 'all', 'tasks': ['mlm', 'mfm-nce', 'fom', 'vsm'], 'train_idx': 'pretrain_splits/tv_train.json', 'val_idx': 'pretrain_splits/tv_val.json', 'ratio': [2, 2, 1, 2]}]}, {'name': 'ht100_full_filtered', 'sub_txt_db': 'howto100m_pretrain_all_60s_clip_sub.db', 'vfeat_db': 'howto100m_pretrain_all_60s_clips', 'vfeat_shards': ['howto100m_pretrain_all_clips_8', 'howto100m_pretrain_all_clips_0', 'howto100m_pretrain_all_clips_1', 'howto100m_pretrain_all_clips_2', 'howto100m_pretrain_all_clips_3', 'howto100m_pretrain_all_clips_4', 'howto100m_pretrain_all_clips_5', 'howto100m_pretrain_all_clips_6', 'howto100m_pretrain_all_clips_7', 'howto100m_pretrain_all_clips_9'], 'vfeat_interval': 2.0, 'splits': [{'name': 'all', 'tasks': ['mfm-nce', 'fom'], 'train_idx': ['howto100_full_pretrain_split/ht100_full_filtered_train_8.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_0.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_1.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_2.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_3.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_4.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_5.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_6.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_7.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_9.json'], 'val_idx': 'howto100_full_pretrain_split/ht100_full_filtered_val.json', 'ratio': [2, 1]}, {'name': 'has-sub', 'tasks': ['mlm', 'vsm'], 'train_idx': ['howto100_full_pretrain_split/ht100_full_filtered_train_8.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_0.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_1.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_2.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_3.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_4.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_5.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_6.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_7.json', 'howto100_full_pretrain_split/ht100_full_filtered_train_9.json'], 'val_idx': 'howto100_full_pretrain_split/ht100_full_filtered_val.json', 'ratio': [2, 2]}]}], targets_ratio=[1, 9], train_batch_size=32, train_span_start_step=0, txt_db='/txt', use_all_neg=True, val_batch_size=32, valid_steps=5000, vfeat_interval=1.5, vfeat_version='resnet_slowfast', warmup_steps=10000, weight_decay=0.01)

I think sub_txt_db should be SubTokLmdb, but it’s not…? I’m not sure. How should I fix this issue?

I can bypass this error message when I ignore L37-L39 and run L40.

Here is another issue

should be modified to f"{opts.img_db}/{target['vfeat_db']}/{shard}", sub_txt_db, ?

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:5 (3 by maintainers)

github_iconTop GitHub Comments

linjieli222commented, Aug 8, 2021


I have updated the utils/ to command out L23-24.

Please check if it works now.

linjieli222commented, Aug 4, 2021

@liveseongho Thanks for pointing out the issue and sorry about the inconvenience.

I will push a fix soon.

Read more comments on GitHub >

github_iconTop Results From Across the Web

Getting error while running for adversarial text #5175
Getting below error while running script in adversarial_text folder: TypeError: Expected int64, got -1.0 of type 'float' instead.
Read more >
Error while using VGG16 pretrained model for grayscale images
When I am trying to run the code with color images with 3 channels, my model is getting into overfitting and val_accuracy doesn't...
Read more >
Error for run a ready project with pytorch - distributed-rpc
I am working on a ready project This project is about text visual question answering.
Read more >
Google's trained Word2Vec model in Python - Chris McCormick
In this post I'm going to describe how to get Google's pre-trained Word2Vec model up and running in Python to play with.
Read more >
Inference with pretrained models
Inference with pretrained models. We provide testing scripts to evaluate a whole dataset (Cityscapes, PASCAL VOC, ADE20k, etc.), and also some high-level ...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Post

No results found

github_iconTop Related Hashnode Post

No results found