question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Get the same results no matter how different the embedded vector

See original GitHub issue

I queried something like this:

curl -XGET "$HOST/sappearance/_search?pretty" -H 'Content-Type: application/json' -d'
{
  "query": {
    "function_score": {
      "boost_mode": "replace",
      "boost": 1,
      "script_score": {
        "script": {
          "source": "binary_vector_score",
          "lang": "knn",
          "params": {
            "cosine": false,
            "field": "embedded",
            "encoded_vector":
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPd9jHwAAAAA3BiywAAAAAAAAAAAAAAAAAAAAAD2f0Q8AAAAAAAAAAD1IY4k8kpnOAAAAAAAAAAA9r5S5PNp8mgAAAAAAAAAAOpXNNwAAAAA78meIAAAAAAAAAAA7yL4/AAAAAAAAAAA9c3QgAAAAAAAAAAAAAAAAAAAAADwIS5M+JBA+PM1oEwAAAAAAAAAAPb7UFgAAAAAAAAAAAAAAAAAAAAAAAAAAPWuvPwAAAAAAAAAAPgdXbwAAAAAAAAAAAAAAAAAAAAA8vUoQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPe0Z4QAAAAAAAAAAAAAAAAAAAAA9WR3bAAAAAD4IS4kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPbxhFzu8AFU9wkM7Pu8+/DWUJz0AAAAAAAAAAAAAAAAAAAAAPgz/cTvKBXU6sPdoO7pa0wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1I7TE9QvIvAAAAAAAAAAAAAAAAAAAAADG9brM9v30LAAAAADwYBwAAAAAAAAAAADwkH0w9wzCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSlb/wAAAAAAAAAAPIfoPTwH5rEAAAAAAAAAAAAAAAAAAAAAAAAAAD15pBs7yhn+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpW/8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9KR/wAAAAAD0CALg+WdvnAAAAAAAAAAA9x1dyAAAAAAAAAAAAAAAAAAAAAD0W7kcAAAAAAAAAAD1UdJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA80xyCPKIAQjv0KwA7pOv4PO7vZwAAAAA+CdeuAAAAAD2+5c08jKHQAAAAAAAAAAAAAAAAPb3M3wAAAAAAAAAAAAAAAAAAAAAAAAAAPOrJWQAAAAAAAAAAAAAAAAAAAAA8vOEoAAAAAAAAAAAAAAAAPLulGAAAAAAAAAAAPHMhBQAAAAAAAAAAPLpOowAAAAAAAAAAAAAAAAAAAAAAAAAAPfysagAAAAAAAAAAPUgk8j0WmvA9aA/APQ4yugAAAAA+Ua3RAAAAAD14ZH0AAAAAAAAAADymFS4AAAAAPKGDGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4pxqc9sLFDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPa7qzT0wi0A95EjtAAAAADv6DtEAAAAAAAAAADGeapUAAAAAAAAAAD0cxAUAAAAAPixwEQAAAAAAAAAAPVjWnAAAAAAAAAAAAAAAADy4S54AAAAAPgOCQwAAAAAAAAAAPC+VNQAAAAAAAAAAAAAAAAAAAAA62RwdPQAfkwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7gRl7AAAAAAAAAAAAAAAAAAAAADs3BtgAAAAAPZdp/wAAAAA81lgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPFfUigAAAAAAAAAAPa36iwAAAAA8/DmxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPMlt/j0sYX0AAAAAAAAAAAAAAAAAAAAAPL7EtgAAAAAAAAAAAAAAAAAAAAA9jHwmPT1Faz1IuMgAAAAAAAAAAAAAAAA98OD7PiGCrAAAAAAAAAAAAAAAAD2Ap8MAAAAAAAAAAAAAAAAAAAAAAAAAADytj6EAAAAAAAAAAAAAAAA8bkR0AAAAAAAAAAA9wx9rAAAAAAAAAAAAAAAAAAAAAAAAAAA9uXPQO7nOmwAAAAAAAAAAPiQipQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPofOGgAAAAAAAAAAPQXMtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2msr0AAAAAPI17JTzLI+AAAAAAAAAAAAAAAAA88OoNPP2TBwAAAAA8ml1bAAAAAAAAAAAAAAAAPZCNWwAAAAAAAAAAAAAAAAAAAAA9BkzEPlRJ8j1FFjgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSTy4gAAAAA9BumrPak55wAAAAAAAAAAO4/wfwAAAAAAAAAAPNad0QAAAAAAAAAAPZl7JQAAAAA9WPtHOmZDAAAAAAAAAAAAAAAAAAAAAAA9K2YzAAAAAAAAAAAxuLrzAAAAAAAAAAAAAAAAAAAAAAAAAAA9EWHfPF86lgAAAAAAAAAAAAAAAAAAAAAAAAAAPRaP7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyR3nMAAAAAAAAAAD3O5ZEAAAAAPKdB3AAAAAAAAAAAAAAAAAAAAAA9I9JvAAAAAD1IMhM8HrxQAAAAAAAAAAAAAAAAAAAAADvxOS0AAAAAAAAAADwUEzsAAAAAO5RG1wAAAAAAAAAAOwzWEAAAAAA9Axy1Pi9ZcQAAAAA8nnvhAAAAAAAAAAA8tvZAAAAAAAAAAAA="
          }
        }
      }
    }

And here is the sample results:

{
       "_index" : "sappearance",
       "_type" : "_doc",
       "_id" : "GYE1_3YB81_RQuAAxOtM",
       "_score" : 1.54172978,
       "_source" : {
         "_pid" : 1,
         "timestamp" : "2021-01-14T10:52:03.269931",
         "embedded" : "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPH44hAAAAAA2tlDbAAAAAAAAAAAAAAAAAAAAADu2GI4AAAAAAAAAADzdAeUAAAAAAAAAAAAAAAA9b6oLPLjqkgAAAAAAAAAAO4ARngAAAAA7RMb5AAAAAAAAAAA+QUhjAAAAAAAAAAA92vL+AAAAAAAAAAAAAAAAAAAAAD0W+xM8nRQrAAAAAAAAAAAAAAAAPHEDYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzXB4EAAAAAPh0ZFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4vqOU9HL46AAAAAAAAAAA9Jby8AAAAADwdLPYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8723XAAAAAD4nAwcAAAAAAAAAAAAAAAAAAAAAPQvDVwAAAAAAAAAAAAAAAAAAAAAAAAAAPh9yFgAAAAA9AVv4PkSx5DWWR1sAAAAAAAAAAAAAAAAAAAAAPbCmkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADptaK4AAAAAPPxQewAAAAA8FK5VAAAAAAAAAAAAAAAAAAAAADHDmmg+jGplAAAAAD0Bk8IAAAAAAAAAADpaBB49cp4xAAAAAAAAAAAAAAAAAAAAAD1aN9MAAAAAAAAAAAAAAAAAAAAAPIqs2gAAAAAAAAAAAAAAAAAAAAAAAAAAO5j31TyGwcI9BY5pAAAAAAAAAAAAAAAAPLWsTD3CWH4AAAAAAAAAADyVkqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0SScgAAAAAAAAAAAAAAAA7n+1XAAAAAD2Ds0E+B+N/AAAAAAAAAAA9UZolAAAAAAAAAAAAAAAAAAAAAD2P5sUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8zuPoAAAAAAAAAAAAAAAAPYz23QAAAAA9Prd0AAAAADygm7I9ucLlAAAAAAAAAAAAAAAAO1v98QAAAAAAAAAAAAAAAAAAAAAAAAAAPT2OfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOzdYiwAAAAA7VvQ2PruU0wAAAAAAAAAAAAAAAD2W9VUAAAAAPnezjwAAAAAAAAAAPdYWIgAAAAA9i4gFPONVsgAAAAA8WP4vAAAAADzj28kAAAAAAAAAADtBIEwAAAAAPXMdPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7bnL6Pgf5pgAAAAA8K6R9AAAAAD2jhusAAAAAAAAAADGqyysAAAAAAAAAAAAAAAAAAAAAPXzVwAAAAAA91k8rAAAAAAAAAAAAAAAAAAAAAD4V+NoAAAAAAAAAAAAAAAAAAAAAPXA7ZgAAAAAAAAAAAAAAAAAAAAA8CLdaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7RWH8AAAAAAAAAAAAAAAAAAAAADxDZ9EAAAAAPRxPMQAAAAA9K34AAAAAAAAAAAA9o/L3AAAAAAAAAAAAAAAAAAAAAD1d8Z0AAAAAAAAAAAAAAAAAAAAAPjnlmgAAAAAAAAAAPek/lgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA89YpRAAAAAD4ZSw4AAAAAAAAAAD3SrmYAAAAAO+5TZgAAAAAAAAAAAAAAAAAAAAA8fuj6Pe9kqQAAAAAAAAAAAAAAAD4XCz89IKRCPm3YtAAAAAAAAAAAAAAAADuWYsoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+DdPtAAAAAAAAAAAAAAAAPg6qtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0b8YI8r1EXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA840plAAAAAAAAAAAAAAAAPSibcgAAAAAAAAAAAAAAADwzzUQAAAAAPZ8IuD0OtxcAAAAAPd9RmQAAAAAAAAAAAAAAAAAAAAAAAAAAPLG+wAAAAAA+DcGNPKaStwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKOF48xiVyPglCuQAAAAAAAAAAAAAAAAAAAAA+PaxuAAAAAAAAAAAxuH6eAAAAAAAAAAAAAAAAAAAAADzZKPw9yr4VOyWMOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO88zPAAAAAAAAAAAAAAAAAAAAAAAAAAAOzSNSAAAAAAAAAAAAAAAAAAAAAAAAAAAPAiZfwAAAAAAAAAAAAAAAAAAAAA+EOQyAAAAAAAAAAA7HLBxAAAAAAAAAAAAAAAAAAAAAD3LuNcAAAAAAAAAAD07eUkAAAAAPAmuJgAAAAAAAAAAPHIMCgAAAAA7NrnXPLvIHQAAAAA8Jly5AAAAAAAAAAA9GtBEAAAAAAAAAAA=",
         "camera_id" : 100
       }
     },
     {
       "_index" : "sappearance",
       "_type" : "_doc",
       "_id" : "NoE1_3YB81_RQuAAxes0",
       "_score" : 1.54172978,
       "_source" : {
         "_pid" : 1,
         "timestamp" : "2021-01-14T10:52:05.291303",
         "embedded" : "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA23yhyAAAAAAAAAAAAAAAAAAAAADzBIC4AAAAAAAAAADyI2DoAAAAAAAAAAAAAAAA9yBa5PYqL5QAAAAAAAAAAPBttUQAAAAAAAAAAPa1SagAAAAA+mKkpAAAAAAAAAAA9l/WTAAAAAAAAAAAAAAAAAAAAAD1iQKo9ITYOAAAAAAAAAAA8cJwnPJX+FAAAAAAAAAAAPTgvuwAAAAAAAAAAAAAAAAAAAAAAAAAAPXuwvwAAAAAAAAAAPVKqqwAAAAAAAAAAAAAAAD2HtOYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9WBXjAAAAAD48xacAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9UNXzAAAAAAAAAAAAAAAAPchA5TwermA9QjEXPgIeBzWT4uwAAAAAAAAAAAAAAAAAAAAAPJpPFQAAAAA9wIsaPJZ4VgAAAAAAAAAAAAAAAAAAAAAAAAAAPTniIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADG+hcs+fYybAAAAAD0IKpYAAAAAAAAAADttBAQAAAAAAAAAAAAAAAAAAAAAAAAAADyadWAAAAAAAAAAAAAAAAAAAAAAPPErtQAAAAA7B6Q+PBHenAAAAAAAAAAAAAAAAD0Q29IAAAAAAAAAAAAAAAAAAAAAPO4hqj0Yv5E9UB1dAAAAADvguH0AAAAAAAAAAD4Z+2YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9L5hkAAAAAD2aF3I9sdv3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIKrEj1E7w4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9jXcYPJcOjgAAAAAAAAAAPkQSmgAAAAA9au0CAAAAAAAAAAA6zpROAAAAAAAAAAAAAAAAAAAAADuWckcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8r05QAAAAAAAAAAA92eCCAAAAAAAAAAAAAAAAAAAAAAAAAAA7EfcdPpYRJwAAAAAAAAAAAAAAAD33VcAAAAAAPeyTAQAAAAAAAAAAPReOZAAAAAA9rqaDAAAAAAAAAAAAAAAAAAAAAD1I99sAAAAAAAAAAAAAAAAAAAAAPNFcYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6bC1GPcxXYj1ZYdkAAAAAAAAAAD0vkhEAAAAAPJitvTGnD6kAAAAAAAAAAAAAAAAAAAAAPQZTAAAAAAA94cfZAAAAAAAAAAAAAAAAPW4ziT3s/6YAAAAAPSbGVwAAAAAAAAAAPTrVywAAAAAAAAAAAAAAAAAAAAA9XlB6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7QrBCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTXIgAAAAAA9/PqqAAAAADwgoLU+HPLnAAAAAAAAAAAAAAAAAAAAAD2FeggAAAAAAAAAADvMW/sAAAAAPZE39gAAAAAAAAAAPh2xLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6ktcwAAAAAAAAAAAAAAAAAAAAAPJBpHgAAAAAAAAAAAAAAAAAAAAAAAAAAPapEgzxg51cAAAAAAAAAAD3ezFc+BVLNPXtmMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyL7WoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8kwECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPNSIVwAAAAAAAAAAPHhYDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2HjRQ76oQrAAAAAD2eYwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9apjLAAAAAAAAAAAAAAAAPT328gAAAAAAAAAAAAAAAD6OjWA89K8kPmDYVz2DNZgAAAAAPOrL6AAAAAAAAAAAPAGmtQAAAAAAAAAAPOAJMAAAAAA97jIrOkbWCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw1rCI9GCJFAAAAAAAAAAAxuHOHAAAAAAAAAAAAAAAAAAAAAD2APzg+EWdMOkfA3gAAAAAAAAAAAAAAAAAAAAAAAAAAPgjZDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2qvQ8AAAAAPExDSQAAAAAAAAAAAAAAAAAAAAA9dX39AAAAAAAAAAA9TPA7AAAAAAAAAAAAAAAAAAAAAD1g4ygAAAAAAAAAADwqjHAAAAAAPCe20AAAAAAAAAAAPI6GmQAAAAAAAAAAPR9I+QAAAAAAAAAAAAAAAAAAAAA7neglAAAAAAAAAAA=",
         "camera_id" : 100
       }
     },
     {
       "_index" : "sappearance",
       "_type" : "_doc",
       "_id" : "G4E1_3YB81_RQuAAxOtb",
       "_score" : 1.54172978,
       "_source" : {
         "_pid" : 1,
         "timestamp" : "2021-01-14T10:52:03.269931",
         "embedded" : "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2l/zeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9hlGVPIS9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+O1EDAAAAAAAAAAA9i7acAAAAAAAAAAAAAAAAAAAAAD3VwS09S38KAAAAAAAAAAAAAAAAPHjBHQAAAAAAAAAAAAAAAAAAAAAAAAAAOxjfrAAAAAAAAAAAPjGkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5H5CQ89DxFAAAAAAAAAAA9KXtfAAAAAD1u6akAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9SXprAAAAAD4N9LIAAAAAAAAAAAAAAAAAAAAAPTsULQAAAAAAAAAAAAAAAAAAAAAAAAAAPiD6FQAAAAA9VhptPlm1xTWFN6sAAAAAAAAAAAAAAAAAAAAAPTNeMzy2K58AAAAAAAAAAAAAAAAAAAAAAAAAADyMiRIAAAAAPGt9ZQAAAAAAAAAAAAAAAAAAAAAAAAAAOwkT8DGv9f0+fmVKAAAAADzYwHEAAAAAAAAAADpLvqo9ZOqHAAAAAAAAAAAAAAAAAAAAAD1i1VcAAAAAAAAAAAAAAAAAAAAAPKhAVgAAAAAAAAAAPEHewAAAAAAAAAAAPX8GuDybM14AAAAAAAAAAAAAAAAAAAAAPLKkTz3u06kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0Cw0oAAAAAAAAAAAAAAAA7rhq9AAAAAD2XC4w96oDRAAAAAAAAAAA8/tFlAAAAAAAAAAAAAAAAAAAAAD2YxPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4rdd0PYzkmwAAAAAAAAAAPZK/xwAAAAA9t2zuAAAAAAAAAAA+Hr/aAAAAAAAAAAAAAAAAO94qFzyVv+QAAAAAAAAAAAAAAAAAAAAAPQN+HwAAAAAAAAAAAAAAAAAAAAA8on+4AAAAAAAAAAA9Y8HyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPrLM5gAAAAAAAAAAAAAAAD2s3SY629qxPo4vTAAAAAAAAAAAPYOI1wAAAAA9mbYePPoOEwAAAAA88rWIAAAAADypHSsAAAAAAAAAADwdL/cAAAAAPb699wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0DXU4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8SvTpPiUilQAAAAAAAAAAAAAAADztpJAAAAAAAAAAADGVDBIAAAAAAAAAADsMnkcAAAAAPT+g3AAAAAA9pSkEAAAAAAAAAAAAAAAAPMQDxj4mMUAAAAAAPQBy3jydD0QAAAAAPa4JtQAAAAAAAAAAAAAAAAAAAAA7lkETAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7STIvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPN8p/AAAAAAAAAAAAAAAAAAAAAA9DGc4AAAAAAAAAAAAAAAAAAAAAD2f8psAAAAAAAAAADwXTYYAAAAAPmPyzAAAAAA9jdetPhEd6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8rgeGAAAAAD4TI0MAAAAAAAAAADyca14AAAAAPGkKSAAAAAAAAAAAAAAAAAAAAAA8v7OFPaT8VAAAAAAAAAAAAAAAAD4SH+k9gazbPlQ/RgAAAAAAAAAAAAAAADwoTUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9rm2lAAAAAAAAAAAAAAAAPeujogAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyYPO88rhomAAAAADotqhIAAAAAAAAAAAAAAAA8wAoPAAAAAAAAAAA8lP0KAAAAAAAAAAAAAAAAOonWtgAAAAAAAAAAAAAAAD2AYDMAAAAAPVtrzT1su48AAAAAPDCxVgAAAAAAAAAAAAAAAAAAAAAAAAAAPHG1PAAAAAA91szHO10AOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPkBlcwAAAAAAAAAAAAAAAAAAAAA9Fg1SAAAAAAAAAAAxor94AAAAAAAAAAAAAAAAAAAAADs6Ho49s6ryAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPKA2GAAAAAAAAAAAAAAAAAAAAAA+HWniAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3mAGkAAAAAAAAAAD2i2QIAAAAAAAAAAAAAAAAAAAAAO+V7yQAAAAA8R4saPLMS8QAAAAAAAAAAAAAAAAAAAAA8i4mBAAAAAAAAAAA=",
         "camera_id" : 100
       }
     }
   ]
Could you help me out? If I use the built-in dot product function there is no problem. 

Issue Analytics

  • State:open
  • Created 3 years ago
  • Comments:6 (1 by maintainers)

github_iconTop GitHub Comments

1reaction
KKbeomcommented, Feb 15, 2021

@lior-k I’m having the same problem.

0reactions
Snow-Dancingcommented, Oct 11, 2022

@lior-k
Thanks for your work! I have solved the above problem that appeared in branch 7.9.0 by debugging es locally.

Bug code in VectorScoreScript.java, line29~30:

final byte[] bytes = binaryEmbeddingReader.binaryValue().bytes;
final ByteArrayDataInput input = new ByteArrayDataInput(bytes);

The right code should be:

final BytesRef bytesRef = binaryEmbeddingReader.binaryValue();
final ByteArrayDataInput input = new ByteArrayDataInput(bytesRef.bytes, bytesRef.offset, bytesRef.length);

Please fix this bug.

Reference: Official usage of BytesRef in ElasticSearch, see AbstractBinaryDVLeafFieldData.java, line62~66:

final BytesRef bytes = values.binaryValue();
assert bytes.length > 0;
in.reset(bytes.bytes, bytes.offset, bytes.length);
count = in.readVInt();
scratch.bytes = bytes.bytes;
Read more comments on GitHub >

github_iconTop Results From Across the Web

Embeddings with Word2Vec in non-NLP Contexts — Details
In this document, we will explore the details of creating embeddings vectors with Word2Vec class of models in non-NLP business contexts.
Read more >
How to Use Word Embedding Layers for Deep Learning with ...
The embedding has a vector per word which the network will use as a representation for the word. We have a sequence of...
Read more >
Why are word embedding actually vectors? - Stack Overflow
Word vectors are positioned in the vector space such that words that share common contexts in the corpus are located in close proximity...
Read more >
Understanding Vectors From a Machine Learning Perspective
Vectors are not the only way to represent numbers for machines to process and transform inputs. While we're mainly concerned with vectors in ......
Read more >
BERT Word Embeddings Tutorial - Chris McCormick
What can we do with these word and sentence embedding vectors? ... but BERT expects it no matter what your application is.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found