CUDA out of memory
See original GitHub issueNot sure how i ran out of memory given this is the only time ive tried running something like this myself rather than on a colab. Doing nvidia-smi
shows processes with “N/A” GPU Memory Usage, and i don’t know how to kill any of these (they don’t go away when python quits). error is as follows:
File "c:\python\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "c:\python\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Python\Scripts\dream.exe\__main__.py", line 7, in <module>
File "c:\python\lib\site-packages\big_sleep\cli.py", line 65, in main
fire.Fire(train)
File "c:\python\lib\site-packages\fire\core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "c:\python\lib\site-packages\fire\core.py", line 471, in _Fire
target=component.__name__)
File "c:\python\lib\site-packages\fire\core.py", line 681, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "c:\python\lib\site-packages\big_sleep\cli.py", line 62, in train
imagine()
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\big_sleep\big_sleep.py", line 407, in forward
loss = self.train_step(epoch, i, image_pbar)
File "c:\python\lib\site-packages\big_sleep\big_sleep.py", line 357, in train_step
losses = self.model(self.encoded_texts["max"], self.encoded_texts["min"])
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\big_sleep\big_sleep.py", line 216, in forward
image_embed = perceptor.encode_image(into)
File "c:\python\lib\site-packages\big_sleep\clip.py", line 519, in encode_image
return self.visual(image.type(self.dtype))
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\big_sleep\clip.py", line 410, in forward
x = self.transformer(x)
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\big_sleep\clip.py", line 381, in forward
return self.resblocks(x)
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\torch\nn\modules\container.py", line 119, in forward
input = module(input)
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\big_sleep\clip.py", line 369, in forward
x = x + self.mlp(self.ln_2(x))
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\torch\nn\modules\container.py", line 119, in forward
input = module(input)
File "c:\python\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\python\lib\site-packages\big_sleep\clip.py", line 346, in forward
return x * torch.sigmoid(1.702 * x)
RuntimeError: CUDA out of memory. Tried to allocate 38.00 MiB (GPU 0; 8.00 GiB total capacity; 5.32 GiB already allocated; 28.04 MiB free; 5.53 GiB reserved in total by PyTorch)
Issue Analytics
- State:
- Created 3 years ago
- Comments:14 (10 by maintainers)
Top Results From Across the Web
"RuntimeError: CUDA error: out of memory" - Stack Overflow
The error occurs because you ran out of memory on your GPU. One way to solve it is to reduce the batch size...
Read more >Solving "CUDA out of memory" Error
Solving "CUDA out of memory" Error · 1) Use this code to see memory usage (it requires internet to install package): · 2)...
Read more >Solving the “RuntimeError: CUDA Out of memory” error
Solving the “RuntimeError: CUDA Out of memory” error · Reduce the `batch_size` · Lower the Precision · Do what the error says ·...
Read more >Resolving CUDA Being Out of Memory With Gradient ...
Implementing gradient accumulation and automatic mixed precision to solve CUDA out of memory issue when training big deep learning models ...
Read more >CUDA out of memory despite available memory · Issue #485
At the End I just want to help you and the error says that you have not enough GPU Ram. You can isntall...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
For those in need of a quick solution: make a python script and use the
num_cutouts
option.To use this, Pytorch requires a decent amount of VRAM - probably around ~8GB for preset one.
It seems like setting the
image_size
parameter in theImagine
constructor to either 128 or 256 helps lower the amount being allocated.