ValueError: Invalid reduction dimension 2 for input with 2 dimensions for translation model training after updating Ludwig
See original GitHub issueDescribe the bug
Hi,
I previously used Ludwig when it was using the Tensorflow1.x
backend. And I created a machine translation project using it. But now after updating ludwig to the latest version, I can no longer run the same project.
I am basically following the configuration mentioned in the example for translation: https://ludwig-ai.github.io/ludwig-docs/examples/#machine-translation
below is my model_definition.yaml
training:
epochs: 500
early_stop: 50
batch_size: 128
# dropout_rate: 0.3
input_features:
-
name: column1
type: text
level: word
encoder: parallel_cnn
representation: sparse
reduce_output: null
preprocessing:
word_tokenizer: space
output_features:
-
name: column2
type: text
level: word
decoder: generator
cell_type: lstm
attention: bahdanau
loss:
type: sampled_softmax_cross_entropy
my terminal command:
ludwig train --experiment_name translate-1 --dataset training_file.csv --config_file model_definition.yaml --output_directory results
This is the error that is produced:
ValueError: Invalid reduction dimension 2 for input with 2 dimensions. for '{{node ecd/text_output_feature/Max}} = Max[T=DT_FLOAT, Tidx=DT_INT32, keep_dims=false](ecd/text_output_featu
re/Abs_1, ecd/text_output_feature/Max/reduction_indices)' with input shapes: [128,256], [] and with computed input tensors: input[1] = <2>.
Here are a few lines from the training_file.csv
column1,column2
k k klk k hjkj hg k kg h k jlk k kj kg hk k k k k k k k klk kjh jkj hg ghk kj kh khgh hg,N S SHL S LHHL LL H SL H H LHL S SL HL HH S S S S S S S SHL SLL HHL LL SHH SL HL HLLH SL
hk lk kh klk l lmlk lml mn m klm mn m ml lj kl klk kjhj jh h h h klm l lm l l l l lk lmkl lkk hjh h h klk kj k klm mlkj kl ml lk lk m lk jkjh jh k k hkh hg hk lm kj gh hg hjk jh,NH HL SL HHL H SHLL HHL HH L LHH SH L SL SL HH LHL SLLH SL S S S HHH L SH L S S S SL HHLH SLS LHL S S HHL SL H SHH SLLL HH HL SL HL H LL LHLL HL H S LHL SL HH HH LL LH SL HHH LL
kj klkjkjh ghg hj j j jh jk hj ghjh hg g fg g g g hjhg hjh gf gh hkjklkjh hjhg hg,NL HHLLHLL LHL HH S S SL HH LH LHHL SL S LH S S S HHLL HHL LL HH SHLHHLLL SHLL HL
g j k l k h k k g g g k k kj g hk k kj h kj h g g,N H H H L L H S L S S H S SL L HH S SL L HL L L S
hkj k k k k kkk kh kl kmlkjk kj h hl l l lk kmlm jlkk j hl l l lk k k kmlm k k k kmlk k k k k kml k kkk hjkjhj jh jkl ljl lmlkj kjhg hg kk hk h kkkh jkl lmlk lkj,NHL H S S S SSS SL HH LHLLLH SL L SH S S SL SHLH LHLS L LH S S SL S S SHLH L S S SHLL S S S S SHL L SSS LHHLLH SL HHH SLH SHLLL HLLL HL HS LH L HSSL HHH SHLL HLL
e e e e de dcded edb cb dc de dc bcdc cb c ac c c bcdcb d dededc bc dcbc ba,N S S S LH LLHHL HLL HL HL HH LL LHHL SL H LH S S LHHLL H SHLHLL LH HLLH LL
g j k l l l k h l k j g h g f gh h k k jk h h g g,N H H H S S L L H L L L H L L HH S H S LH L S L S
f fedf d dfe fg g g ggf ed df ef d dhj h hgf g f efg fe de dd c ed d cd d df ghgfg e,N SLLH L SHL HH S S SSL LL SH LH L SHH L SLL H L LHH LL LH LS L HL S LH S SH HHLLH L
d fgh g g g g gh g g g ge g fgh fe dfc de fefed dc f ghg g gh g g gh g ghkjh jkjh g ghjhgh hg h gf g h kl kjkl lk h gf hkj klk kjh jh hg hg gh g g g fgh fe dfc de fefed g ghgf gh g ghkjh jkjh ghjhgh hg,N HHH L S S S SH L S S SL H LHH LL LHL HH HLHLL SL H HHL S SH L S SH L SHHLL HHLL L SHHLLH SL H LL H H HH LLHH SL L LL HHL HHL SLL HL SL HL SH L S S LHH LL LHL HH HLHLL H SHLL HH L SHHLL HHLL LHHLLH SL
Environment (please complete the following information):
- OS: Windows 10
- Python version 3.6.8
- Ludwig version 0.33
Issue Analytics
- State:
- Created 2 years ago
- Reactions:1
- Comments:19
Top Results From Across the Web
Can't define Model - ValueError: Invalid reduction dimension 2 ...
As you know, LSTM input should be have ndim=3 , which in your case becomes (None, None, 100) . I'm not sure about...
Read more >See raw diff - Hugging Face
Module): The model to update. + grad_clip_threshold (float): The gradient clipping value to use. + train_iter (chainer.dataset.Iterator): The training ...
Read more >Keras Invalid reduction dimension 2 for input with 2 dimensions.
ValueError : Invalid reduction dimension 2 for input with 2 dimensions. for 'metrics/sparse_accuracy/All' (op: 'All') with input shapes: [?
Read more >[D] Simple Questions Thread : r/MachineLearning - Reddit
I'm using Ludwig to train a ML model to group a list keywords together by their similarity. Essentially there are two columns 'keywords'...
Read more >xclim Documentation
2. After the computation, it also checks the number of values per period to make sure there are not missing values or NaN...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
We are looking into this issue anyway, will update soon.
@farazk86 re: the
sampled_softmax
issue. We are still looking at it. In the meantime, you should be able to use the regular softmax cross entropy loss function.