Wrong tensorflow version
See original GitHub issueThe detailed descriptions are
Using TensorFlow backend.
Traceback (most recent call last):
File "/Users/Pranav/Downloads/DL-hybrid-precoder-master/main_train_beamforming.py", line 7, in <module>
from keras import back
ImportError: cannot import name 'back' from 'keras' (/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/keras/__init__.py)
Process finished with exit code 1
absl-py | 0.9.0 | – | – | – arviz | 0.7.0 | astor | 0.8.1 | backend | 0.2.4.1 | ca-certificates | 2020.1.1 | cachetools | 4.0.0 | certifi | 2019.11.28 | cftime | 1.1.1.1 | chardet | 3.0.4 | click | 7.1.1 | cycler | 0.10.0 | dash | 1.9.1 | dash-core-components | 1.8.1 | dash-html-components | 1.0.2 | dash-renderer | 1.2.4 | dash-table | 4.6.1 | decorator | 4.4.2 | flask | 1.1.1 | flask-compress | 1.4.0 | future | 0.18.2 | gast | 0.2.2 | google-auth | 1.11.3 | google-auth-oauthlib | 0.4.1 | google-pasta | 0.2.0 | grpcio | 1.27.2 | h5py | 2.10.0 | idna | 2.9 | imageio | 2.5.0 | imgaug | 0.2.9 | itsdangerous | 1.1.0 | jinja2 | 2.11.1 | joblib | 0.14.1 | keras | 2.3.1 | keras-applications | 1.0.8 | keras-preprocessing | 1.1.0 | keras-segmentation | 0.3.0 | kiwisolver | 1.1.0 | libcxx | 4.0.1 | libcxxabi | 4.0.1 | libedit | 3.1.20181209 | libffi | 3.2.1 | markdown | 3.2.1 | markupsafe | 1.1.1 | matplotlib | 3.2.1 | ncurses | 6.2 | netcdf4 | 1.5.3 | networkx | 2.4 | numpy | 1.18.2 | oauthlib | 3.1.0 | opencv-python | 4.2.0.32 | openssl | 1.1.1e | opt-einsum | 3.2.0 | packaging | 20.3 | pandas | 1.0.3 | patsy | 0.5.1 | pillow | 7.0.0 | pip | 20.0.2 | plotly | 4.5.4 | protobuf | 3.11.3 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pymc3 | 3.8 | pyparsing | 2.4.6 | python | 3.7.6 | python-dateutil | 2.8.1 | pytz | 2019.3 | pywavelets | 1.1.1 | pyyaml | 5.3.1 | readline | 7.0 | requests | 2.23.0 | requests-oauthlib | 1.3.0 | retrying | 1.3.3 | rsa | 4.0 | scikit-image | 0.16.2 | scikit-learn | 0.22.2.post1 | scipy | 1.4.1 | setuptools | 46.0.0 | shapely | 1.7.0 | six | 1.14.0 | sqlite | 3.31.1 | tensorboard | 2.1.1 | tensorflow | 2.1.0 | tensorflow-estimator | 2.1.0 | termcolor | 1.1.0 | tf | 1.0.0 | theano | 1.0.4 | tk | 8.6.8 | tqdm | 4.43.0 | urllib3 | 1.25.8 | werkzeug | 1.0.0 | wheel | 0.34.2 | wrapt | 1.12.1 | xarray | 0.15.0 | xz | 5.2.4 | zlib | 1.2.11 |
When I ran a second file:
2020-03-20 17:20:54.258405: W tensorflow/python/util/util.cc:319] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:tensorflow:From /Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
Traceback (most recent call last):
File "/Users/Pranav/Downloads/mnist.py", line 32, in <module>
predictions = new_model.predict([x_test])
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 1013, in predict
use_multiprocessing=use_multiprocessing)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 498, in predict
workers=workers, use_multiprocessing=use_multiprocessing, **kwargs)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 426, in _model_iteration
use_multiprocessing=use_multiprocessing)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 646, in _process_inputs
x, y, sample_weight=sample_weights)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 2346, in _standardize_user_data
all_inputs, y_input, dict_inputs = self._build_model_with_inputs(x, y)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 2572, in _build_model_with_inputs
self._set_inputs(cast_inputs)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 2647, in _set_inputs
inputs = self._set_input_attrs(inputs)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/training/tracking/base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 2686, in _set_input_attrs
input_shape = (None,) + tuple(inputs.shape[1:])
AttributeError: 'list' object has no attribute 'shape'
Third file:
/Users/Pranav/opt/anaconda3/envs/Research_DL/bin/python /Users/Pranav/Downloads/Test/train.py
loading data...
loading complete
The shape of CSI is: (10, 1, 64)
2020-03-20 17:22:33.388225: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7fc0ab981a00 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-03-20 17:22:33.388250: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
imperfect_CSI (InputLayer) [(None, 1, 2, 64)] 0
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 1, 2, 64) 256 imperfect_CSI[0][0]
__________________________________________________________________________________________________
flatten (Flatten) (None, 128) 0 batch_normalization[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 128) 512 flatten[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 256) 33024 batch_normalization_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 256) 1024 dense[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 128) 32896 batch_normalization_2[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 64) 8256 dense_1[0][0]
__________________________________________________________________________________________________
perfect_CSI (InputLayer) [(None, 64)] 0
__________________________________________________________________________________________________
lambda (Lambda) (None, 64) 0 dense_2[0][0]
__________________________________________________________________________________________________
SNR_input (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
lambda_1 (Lambda) (64, 1) 0 perfect_CSI[0][0]
lambda[0][0]
SNR_input[0][0]
==================================================================================================
Total params: 75,968
Trainable params: 75,072
Non-trainable params: 896
__________________________________________________________________________________________________
Train on 9 samples, validate on 1 samples
Epoch 1/50000
2020-03-20 17:22:35.197791: W tensorflow/core/common_runtime/base_collective_executor.cc:217] BaseCollectiveExecutor::StartAbort Invalid argument: Incompatible shapes: [9] vs. [64]
[[{{node BroadcastGradientArgs_4}}]]
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_loss` which is not available. Available metrics are: lr
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
Traceback (most recent call last):
File "/Users/Pranav/Downloads/Test/train.py", line 51, in <module>
epochs=50000, verbose=2, validation_split=0.1, callbacks=[reduce_lr, checkpoint])
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit
use_multiprocessing=use_multiprocessing)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 342, in fit
total_epochs=epochs)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 128, in run_one_epoch
batch_outs = execution_function(iterator)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py", line 98, in execution_function
distributed_function(input_fn))
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py", line 568, in __call__
result = self._call(*args, **kwds)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py", line 632, in _call
return self._stateless_fn(*args, **kwds)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 2363, in __call__
return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 1611, in _filtered_call
self.captured_inputs)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 1692, in _call_flat
ctx, args, cancellation_manager=cancellation_manager))
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py", line 545, in call
ctx=ctx)
File "/Users/Pranav/opt/anaconda3/envs/Research_DL/lib/python3.7/site-packages/tensorflow_core/python/eager/execute.py", line 67, in quick_execute
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [9] vs. [64]
[[node BroadcastGradientArgs_4 (defined at /Downloads/Test/train.py:51) ]] [Op:__inference_distributed_function_1717]
Function call stack:
distributed_function
9/9 - 2s
Process finished with exit code 1
Please help. Thanks.
Issue Analytics
- State:
- Created 4 years ago
- Comments:10 (1 by maintainers)
Top GitHub Comments
Hello w4N,
I followed your instruction and finally my both projects are running. I got few other issues but I think first I will contact the authors. Anyway, Thank you so much for your answers and in future I will write codes and questions in a precise manner. Regards, Pranav
Also, was looking at this repo which seems the one you are referring to: https://github.com/pranavjha24/DL-hybrid-precoder/blob/master/main_train_beamforming.py It doesn’t look to me it is using Ludwig at all, so I’m not really sure of what you are asking here and why are you asking it here. You should probably ask to the authors of the repo you forked. So I’m closing, if you can provide an explanation of how Ludwig is relevant to this I may reopen.