Unable to transform test data after MCA fitting the training data
See original GitHub issuedata = pd.read_csv("data/training set.csv")
X = data.loc[:, 'OS.1':'DSA.1']
df = pd.DataFrame(X)
mca = prince.MCA(
n_components=2,
n_iter=3,
copy=True,
check_input=True,
engine='auto',
random_state=42
)
mca = mca.fit(df)
df_new = df.loc[0:5, :]
I = mca.transform(df_new)
print(I)
Output: File “C:/…/clustering/k means.py”, line 62, in <module> I = mca.transform(df_new) File “C:..\clustering\interpreter2\lib\site-packages\prince\mca.py”, line 47, in transform return self.row_coordinates(X) File “C:..\clustering\interpreter2\lib\site-packages\prince\mca.py”, line 37, in row_coordinates return super().row_coordinates(self.one_hot_.transform(X)) File “C:..\clustering\interpreter2\lib\site-packages\prince\ca.py”, line 111, in row_coordinates X = X / X.sum(axis=1) File “C:\python36\lib\site-packages\scipy\sparse\base.py”, line 1015, in sum np.ones((n, 1), dtype=res_dtype)) File “C:\python36\lib\site-packages\scipy\sparse\base.py”, line 499, in mul result = self._mul_vector(np.ravel(other)) File “C:\python36\lib\site-packages\scipy\sparse\coo.py”, line 571, in _mul_vector other.dtype.char)) File “C:\python36\lib\site-packages\scipy\sparse\sputils.py”, line 60, in upcast_char t = upcast(*map(np.dtype, args)) File “C:\python36\lib\site-packages\scipy\sparse\sputils.py”, line 52, in upcast raise TypeError(‘no supported conversion for types: %r’ % (args,)) TypeError: no supported conversion for types: (dtype(‘O’), dtype(‘O’))
This is how data looks like
print(df_new)
output:
0 1 2 3
0 9 8 9 9
1 8 7 8 6
2 8 7 9 9
3 8 7 9 9
4 8 7 8 7
5 9 8 10 10
python 3.6.4 scikit 0.20.2 numpy 1.16.1 pandas 0.24.1
Issue Analytics
- State:
- Created 5 years ago
- Comments:11 (5 by maintainers)
@adeebabdulsalam can you see if the latest version fixes your issue (if you have time of course)?
Great! Sorry this took so much time. Have a very nice day!