Error when running ICNet with PascalVOC
See original GitHub issueHello,
When I run python train.py --arch icnet --dataset pascal --n_epoch 500
I get the following output (checked on Windows and Linux, with PyTorch 0.3.1 and 0.4.1)
The dataset is the one here.
Using custom loss
Traceback (most recent call last):
File "train.py", line 160, in <module>
train(args)
File "train.py", line 86, in train
outputs = model(images)
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\parallel\data_parallel.py", line 68, in forward
return self.module(*inputs, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "D:\nn\github\pytorch-semseg\ptsemseg\models\icnet.py", line 120, in forward
x_sub24, sub4_cls = self.cff_sub24(x_sub4, x_sub2)
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "D:\nn\github\pytorch-semseg\ptsemseg\models\utils.py", line 500, in forward
high_fused_fm = F.relu(low_fm+high_fm, inplace=True)
RuntimeError: The size of tensor a (15) must match the size of tensor b (16) at non-singleton dimension 3
Am I doing something wrong? Please let me know if you need more info.
Issue Analytics
- State:
- Created 5 years ago
- Comments:8 (2 by maintainers)
Top Results From Across the Web
Error when running ICNet with PascalVOC · Issue #114 · meetps ...
Hello, When I run python train.py --arch icnet --dataset pascal --n_epoch 500 I get the following output (checked on Windows and Linux, with...
Read more >Error when trying pascal voc 2012 segmentation - Fast.ai forums
When running, I got RuntimeError: CUDA error: device-side assert triggered. Generally, this error means there is something wrong in classes. I ...
Read more >mmseg.apis — MMSegmentation 0.29.1 documentation
Using RepeatDataset can reduce the data loading time between epochs. Parameters ... ICNet for Real-Time Semantic Segmentation on High-Resolution Images.
Read more >On the Robustness of Semantic Segmentation Models ... - arXiv
Pascal VOC, when using the same hyperparameters as [55]. Thus, it may be a dataset property that causes the net-.
Read more >Benchmarking the Robustness of Semantic ... - Springer Link
The performance of CNN models is generally measured using benchmarks ... generated from the Cityscapes dataset, PASCAL VOC 2012, and ADE20K.
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Since the kernel sizes and strides of pyramid pooling in original ICNet implementation are hard-coded, https://github.com/meetshah1995/pytorch-semseg/blob/dfecf4973c702c9be4b55d5066bd4a79bcb0c1bb/ptsemseg/models/utils.py#L382-L383 you may replace those lines with the following lines to set
k_sizes
andstrides
appropriately. https://github.com/meetshah1995/pytorch-semseg/blob/dfecf4973c702c9be4b55d5066bd4a79bcb0c1bb/ptsemseg/models/utils.py#L376-L380am facing the similar problem now. Can you tell me how to modify the function get_interp_size in ptsemseg/models/utils.py?Thanks for you help.