question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. ItΒ collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

training question about learn rate , map=0

See original GitHub issue

During training, it was found that the learning step size changed quickly. Within one epoch, it changed from 6.15E-08 to 2.00E-04, and the corresponding total loss was reduced from 14.5 to 10. The subsequent learning gradually increased until the 65th epoch. , And total loss hovering around 9, the ap of each category is about 0

keys β”‚ values β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════════════════════║ β”‚ seed β”‚ None β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ output_dir β”‚ './YOLOX_outputs' β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ print_interval β”‚ 1 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ eval_interval β”‚ 1 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ num_classes β”‚ 3 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ depth β”‚ 0.33 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ width β”‚ 0.5 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ data_num_workers β”‚ 4 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ input_size β”‚ (640, 640) β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ multiscale_range β”‚ 5 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ data_dir β”‚ None β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ train_ann β”‚ 'instances_train2017.json' β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ val_ann β”‚ 'instances_val2017.json' β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ mosaic_prob β”‚ 1.0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ mixup_prob β”‚ 1.0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ hsv_prob β”‚ 1.0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ flip_prob β”‚ 0.5 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ degrees β”‚ 10.0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ translate β”‚ 0.1 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ mosaic_scale β”‚ (0.1, 2) β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ mixup_scale β”‚ (0.5, 1.5) β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ shear β”‚ 2.0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ perspective β”‚ 0.0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ enable_mixup β”‚ True β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ warmup_epochs β”‚ 5 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ max_epoch β”‚ 80 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ warmup_lr β”‚ 0 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ basic_lr_per_img β”‚ 0.00015625 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ scheduler β”‚ 'yoloxwarmcos' β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ no_aug_epochs β”‚ 15 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ min_lr_ratio β”‚ 0.05 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ ema β”‚ True β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ weight_decay β”‚ 0.0005 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ momentum β”‚ 0.9 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ exp_name β”‚ 'yolox_voc_s' β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ test_size β”‚ (640, 640) β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ test_conf β”‚ 0.01 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ nmsthre β”‚ 0.65

2021-10-11 14:38:09 | INFO | yolox.core.trainer:188 - ---> start train epoch1 2021-10-11 14:38:12 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 1/57, mem: 6736Mb, iter_time: 2.817s, data_time: 0.001s, total_loss: 14.5, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 8.9, cls_loss: 1.7, lr: 6.156e-08, size: 640, ETA: 3:34:03 2021-10-11 14:38:12 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 2/57, mem: 6736Mb, iter_time: 0.306s, data_time: 0.012s, total_loss: 14.9, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 9.2, cls_loss: 1.8, lr: 2.462e-07, size: 640, ETA: 1:58:38 2021-10-11 14:38:12 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 3/57, mem: 6736Mb, iter_time: 0.226s, data_time: 0.001s, total_loss: 13.7, iou_loss: 4.0, l1_loss: 0.0, conf_loss: 8.1, cls_loss: 1.6, lr: 5.540e-07, size: 640, ETA: 1:24:47 2021-10-11 14:38:12 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 4/57, mem: 6736Mb, iter_time: 0.199s, data_time: 0.001s, total_loss: 13.5, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 7.8, cls_loss: 1.9, lr: 9.849e-07, size: 640, ETA: 1:07:21 2021-10-11 14:38:13 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 5/57, mem: 6736Mb, iter_time: 0.212s, data_time: 0.001s, total_loss: 14.0, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 8.4, cls_loss: 1.7, lr: 1.539e-06, size: 640, ETA: 0:57:05 2021-10-11 14:38:13 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 6/57, mem: 6736Mb, iter_time: 0.211s, data_time: 0.001s, total_loss: 13.3, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 7.7, cls_loss: 1.7, lr: 2.216e-06, size: 640, ETA: 0:50:13 2021-10-11 14:38:13 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 7/57, mem: 6736Mb, iter_time: 0.210s, data_time: 0.001s, total_loss: 14.0, iou_loss: 4.0, l1_loss: 0.0, conf_loss: 8.3, cls_loss: 1.7, lr: 3.016e-06, size: 640, ETA: 0:45:19 2021-10-11 14:38:13 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 8/57, mem: 6736Mb, iter_time: 0.477s, data_time: 0.001s, total_loss: 14.4, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 8.9, cls_loss: 1.6, lr: 3.940e-06, size: 640, ETA: 0:44:10 2021-10-11 14:38:14 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 9/57, mem: 6736Mb, iter_time: 0.357s, data_time: 0.001s, total_loss: 14.3, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 8.7, cls_loss: 1.9, lr: 4.986e-06, size: 640, ETA: 0:42:15 2021-10-11 14:38:14 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 10/57, mem: 6736Mb, iter_time: 0.195s, data_time: 0.001s, total_loss: 15.6, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 9.9, cls_loss: 2.0, lr: 6.156e-06, size: 640, ETA: 0:39:30 2021-10-11 14:38:16 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 11/57, mem: 7069Mb, iter_time: 1.865s, data_time: 0.232s, total_loss: 14.3, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 8.6, cls_loss: 1.7, lr: 7.448e-06, size: 736, ETA: 0:48:45 2021-10-11 14:38:16 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 12/57, mem: 7069Mb, iter_time: 0.253s, data_time: 0.001s, total_loss: 14.5, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 8.7, cls_loss: 1.8, lr: 8.864e-06, size: 736, ETA: 0:46:17 2021-10-11 14:38:16 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 13/57, mem: 7069Mb, iter_time: 0.265s, data_time: 0.001s, total_loss: 14.4, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 8.7, cls_loss: 1.8, lr: 1.040e-05, size: 736, ETA: 0:44:15 2021-10-11 14:38:17 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 14/57, mem: 7069Mb, iter_time: 0.261s, data_time: 0.001s, total_loss: 13.8, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 8.1, cls_loss: 2.0, lr: 1.207e-05, size: 736, ETA: 0:42:30 2021-10-11 14:38:17 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 15/57, mem: 7069Mb, iter_time: 0.258s, data_time: 0.001s, total_loss: 14.0, iou_loss: 4.0, l1_loss: 0.0, conf_loss: 8.3, cls_loss: 1.7, lr: 1.385e-05, size: 736, ETA: 0:40:57 2021-10-11 14:38:17 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 16/57, mem: 7069Mb, iter_time: 0.321s, data_time: 0.001s, total_loss: 14.3, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 8.6, cls_loss: 1.9, lr: 1.576e-05, size: 736, ETA: 0:39:54 2021-10-11 14:38:17 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 17/57, mem: 7069Mb, iter_time: 0.258s, data_time: 0.001s, total_loss: 13.6, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 8.1, cls_loss: 1.8, lr: 1.779e-05, size: 736, ETA: 0:38:42 2021-10-11 14:38:18 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 18/57, mem: 7069Mb, iter_time: 0.248s, data_time: 0.002s, total_loss: 13.3, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 7.7, cls_loss: 1.8, lr: 1.994e-05, size: 736, ETA: 0:37:35 2021-10-11 14:38:18 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 19/57, mem: 7069Mb, iter_time: 0.264s, data_time: 0.002s, total_loss: 13.9, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 8.2, cls_loss: 1.8, lr: 2.222e-05, size: 736, ETA: 0:36:38 2021-10-11 14:38:19 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 20/57, mem: 7069Mb, iter_time: 0.806s, data_time: 0.001s, total_loss: 13.8, iou_loss: 4.0, l1_loss: 0.0, conf_loss: 8.2, cls_loss: 1.6, lr: 2.462e-05, size: 736, ETA: 0:37:51 2021-10-11 14:38:20 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 21/57, mem: 7069Mb, iter_time: 1.373s, data_time: 0.010s, total_loss: 13.6, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 7.9, cls_loss: 1.9, lr: 2.715e-05, size: 672, ETA: 0:40:59 2021-10-11 14:38:20 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 22/57, mem: 7069Mb, iter_time: 0.291s, data_time: 0.001s, total_loss: 13.0, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 7.5, cls_loss: 1.7, lr: 2.979e-05, size: 672, ETA: 0:40:07 2021-10-11 14:38:21 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 23/57, mem: 7069Mb, iter_time: 0.242s, data_time: 0.001s, total_loss: 13.4, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 7.8, cls_loss: 1.9, lr: 3.256e-05, size: 672, ETA: 0:39:09 2021-10-11 14:38:21 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 24/57, mem: 7069Mb, iter_time: 0.241s, data_time: 0.001s, total_loss: 13.5, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 7.9, cls_loss: 1.8, lr: 3.546e-05, size: 672, ETA: 0:38:17 2021-10-11 14:38:21 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 25/57, mem: 7069Mb, iter_time: 0.254s, data_time: 0.001s, total_loss: 13.4, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 7.9, cls_loss: 1.7, lr: 3.847e-05, size: 672, ETA: 0:37:30 2021-10-11 14:38:21 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 26/57, mem: 7069Mb, iter_time: 0.233s, data_time: 0.002s, total_loss: 13.0, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 7.5, cls_loss: 1.6, lr: 4.161e-05, size: 672, ETA: 0:36:44 2021-10-11 14:38:22 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 27/57, mem: 7069Mb, iter_time: 0.254s, data_time: 0.001s, total_loss: 12.6, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 7.1, cls_loss: 1.9, lr: 4.488e-05, size: 672, ETA: 0:36:04 2021-10-11 14:38:22 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 28/57, mem: 7069Mb, iter_time: 0.243s, data_time: 0.001s, total_loss: 12.5, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 7.0, cls_loss: 1.6, lr: 4.826e-05, size: 672, ETA: 0:35:26 2021-10-11 14:38:22 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 29/57, mem: 7069Mb, iter_time: 0.251s, data_time: 0.001s, total_loss: 12.2, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 6.7, cls_loss: 1.7, lr: 5.177e-05, size: 672, ETA: 0:34:51 2021-10-11 14:38:22 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 30/57, mem: 7069Mb, iter_time: 0.233s, data_time: 0.001s, total_loss: 12.5, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 7.0, cls_loss: 1.8, lr: 5.540e-05, size: 672, ETA: 0:34:16 2021-10-11 14:38:24 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 31/57, mem: 7069Mb, iter_time: 1.456s, data_time: 0.002s, total_loss: 12.6, iou_loss: 4.0, l1_loss: 0.0, conf_loss: 7.0, cls_loss: 1.5, lr: 5.916e-05, size: 704, ETA: 0:36:42 2021-10-11 14:38:24 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 32/57, mem: 7069Mb, iter_time: 0.250s, data_time: 0.002s, total_loss: 12.2, iou_loss: 4.0, l1_loss: 0.0, conf_loss: 6.8, cls_loss: 1.5, lr: 6.303e-05, size: 704, ETA: 0:36:08 2021-10-11 14:38:24 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 33/57, mem: 7069Mb, iter_time: 0.284s, data_time: 0.001s, total_loss: 11.7, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 6.3, cls_loss: 1.7, lr: 6.704e-05, size: 704, ETA: 0:35:41 2021-10-11 14:38:25 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 34/57, mem: 7069Mb, iter_time: 0.254s, data_time: 0.001s, total_loss: 11.6, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 6.2, cls_loss: 1.5, lr: 7.116e-05, size: 704, ETA: 0:35:11 2021-10-11 14:38:25 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 35/57, mem: 7069Mb, iter_time: 0.254s, data_time: 0.001s, total_loss: 11.9, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 6.5, cls_loss: 1.8, lr: 7.541e-05, size: 704, ETA: 0:34:44 2021-10-11 14:38:25 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 36/57, mem: 7069Mb, iter_time: 0.250s, data_time: 0.001s, total_loss: 11.8, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 6.4, cls_loss: 1.5, lr: 7.978e-05, size: 704, ETA: 0:34:17 2021-10-11 14:38:26 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 37/57, mem: 7069Mb, iter_time: 0.549s, data_time: 0.002s, total_loss: 11.7, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 6.4, cls_loss: 1.7, lr: 8.427e-05, size: 704, ETA: 0:34:28 2021-10-11 14:38:26 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 38/57, mem: 7069Mb, iter_time: 0.257s, data_time: 0.001s, total_loss: 11.8, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 6.5, cls_loss: 1.6, lr: 8.889e-05, size: 704, ETA: 0:34:03 2021-10-11 14:38:27 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 39/57, mem: 7069Mb, iter_time: 0.486s, data_time: 0.001s, total_loss: 11.6, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 6.3, cls_loss: 1.6, lr: 9.363e-05, size: 704, ETA: 0:34:07 2021-10-11 14:38:27 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 40/57, mem: 7069Mb, iter_time: 0.245s, data_time: 0.001s, total_loss: 11.2, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 6.0, cls_loss: 1.6, lr: 9.849e-05, size: 704, ETA: 0:33:43 2021-10-11 14:38:27 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 41/57, mem: 7069Mb, iter_time: 0.694s, data_time: 0.001s, total_loss: 11.5, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 6.3, cls_loss: 1.6, lr: 1.035e-04, size: 704, ETA: 0:34:10 2021-10-11 14:38:28 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 42/57, mem: 7069Mb, iter_time: 0.253s, data_time: 0.002s, total_loss: 10.3, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 5.3, cls_loss: 1.5, lr: 1.086e-04, size: 704, ETA: 0:33:48 2021-10-11 14:38:29 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 43/57, mem: 7069Mb, iter_time: 0.880s, data_time: 0.002s, total_loss: 10.9, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 5.6, cls_loss: 1.6, lr: 1.138e-04, size: 704, ETA: 0:34:32 2021-10-11 14:38:29 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 44/57, mem: 7069Mb, iter_time: 0.252s, data_time: 0.002s, total_loss: 11.1, iou_loss: 3.5, l1_loss: 0.0, conf_loss: 5.9, cls_loss: 1.6, lr: 1.192e-04, size: 704, ETA: 0:34:11 2021-10-11 14:38:29 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 45/57, mem: 7069Mb, iter_time: 0.372s, data_time: 0.003s, total_loss: 11.3, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 6.2, cls_loss: 1.3, lr: 1.247e-04, size: 704, ETA: 0:34:02 2021-10-11 14:38:30 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 46/57, mem: 7069Mb, iter_time: 0.305s, data_time: 0.001s, total_loss: 11.3, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 6.1, cls_loss: 1.5, lr: 1.303e-04, size: 704, ETA: 0:33:47 2021-10-11 14:38:30 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 47/57, mem: 7069Mb, iter_time: 0.883s, data_time: 0.002s, total_loss: 10.5, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 5.4, cls_loss: 1.4, lr: 1.360e-04, size: 704, ETA: 0:34:28 2021-10-11 14:38:31 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 48/57, mem: 7069Mb, iter_time: 0.246s, data_time: 0.004s, total_loss: 11.2, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 6.0, cls_loss: 1.5, lr: 1.418e-04, size: 704, ETA: 0:34:08 2021-10-11 14:38:31 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 49/57, mem: 7069Mb, iter_time: 0.410s, data_time: 0.001s, total_loss: 10.8, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 5.7, cls_loss: 1.3, lr: 1.478e-04, size: 704, ETA: 0:34:03 2021-10-11 14:38:31 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 50/57, mem: 7069Mb, iter_time: 0.249s, data_time: 0.006s, total_loss: 10.6, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 5.6, cls_loss: 1.4, lr: 1.539e-04, size: 704, ETA: 0:33:45 2021-10-11 14:38:33 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 51/57, mem: 7069Mb, iter_time: 1.222s, data_time: 0.001s, total_loss: 10.6, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 5.5, cls_loss: 1.5, lr: 1.601e-04, size: 704, ETA: 0:34:52 2021-10-11 14:38:33 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 52/57, mem: 7069Mb, iter_time: 0.273s, data_time: 0.001s, total_loss: 11.0, iou_loss: 3.8, l1_loss: 0.0, conf_loss: 5.8, cls_loss: 1.3, lr: 1.665e-04, size: 704, ETA: 0:34:35 2021-10-11 14:38:33 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 53/57, mem: 7069Mb, iter_time: 0.245s, data_time: 0.001s, total_loss: 10.6, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 5.5, cls_loss: 1.3, lr: 1.729e-04, size: 704, ETA: 0:34:17 2021-10-11 14:38:33 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 54/57, mem: 7069Mb, iter_time: 0.239s, data_time: 0.001s, total_loss: 10.4, iou_loss: 3.9, l1_loss: 0.0, conf_loss: 5.3, cls_loss: 1.2, lr: 1.795e-04, size: 704, ETA: 0:33:58 2021-10-11 14:38:34 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 55/57, mem: 7069Mb, iter_time: 1.115s, data_time: 0.001s, total_loss: 10.2, iou_loss: 3.5, l1_loss: 0.0, conf_loss: 5.2, cls_loss: 1.5, lr: 1.862e-04, size: 704, ETA: 0:34:52 2021-10-11 14:38:35 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 56/57, mem: 7069Mb, iter_time: 0.246s, data_time: 0.002s, total_loss: 10.3, iou_loss: 3.7, l1_loss: 0.0, conf_loss: 5.2, cls_loss: 1.4, lr: 1.930e-04, size: 704, ETA: 0:34:34 2021-10-11 14:38:35 | INFO | yolox.core.trainer:246 - epoch: 1/80, iter: 57/57, mem: 7069Mb, iter_time: 0.256s, data_time: 0.002s, total_loss: 10.4, iou_loss: 3.6, l1_loss: 0.0, conf_loss: 5.5, cls_loss: 1.3, lr: 2.000e-04, size: 704, ETA: 0:34:

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:7 (1 by maintainers)

github_iconTop GitHub Comments

1reaction
cena001pluscommented, Nov 30, 2021

I think I already know what the problem is. The image size in the xml file is inconsistent with the corresponding image.

0reactions
cena001pluscommented, Oct 21, 2021

@cena001plus

Why is the learning rate small first and then large, shouldn’t it be large first and then small?

It’s called Warmup. Your loss seems too high. Please carefully check your data.

There is almost no learning in the first 100 epochs. Although the total loss drops from 14 to about 9, the mp is almost 0. After training to 300 epochs, the total loss is still about 9, but the mp is about 0.1, but the mp is unstable.,Need to train more than 200 epochs, ap reaches about 0.1, the whole process is very slow, epoch=300, ap is still about 0.1, because my training set data is very small, only more than 1000 pictures, but the same data The mAP on yolov4 can reach 0.6. I want to know why the yolox-s is so low, do I need to adjust the parameters?

Read more comments on GitHub >

github_iconTop Results From Across the Web

12 common questions parents ask about MAP Growth - NWEA
Families want to understand MAP Growth: what it is, how it works, and why their child is taking it. Here are answers to...
Read more >
Top 50 Deep Learning Interview Questions & Answers 2022 ...
Self-organizing maps. Next up, let us look at more neural network interview questions that will help you ace the interviews. 42. Can weΒ ......
Read more >
Questions 13: Self-Organising maps - Middlesex University
where w is the new weight vector, Ξ± is the learning rate, h is the neighbourhood function. Let Ξ± = 0.5 and the...
Read more >
A Good Map Teaches You to Ask a Better Question - Esri
Questions form the foundation of our investigations, whether the question is What is the relationship between birth rate and life expectancy around the...
Read more >
Top Deep Learning Interview Questions and Answers for 2023
We push that error backward through the neural network and use that during the different training functions. What is the Cost function? 8....
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found