deepspeed.zero.Init causes infinite recursion error
See original GitHub issueDescribe the bug
When the deepspeed.zero.Init
wraps not only the model but also the deepspeed.initialize call, a RecursionError is raised.
This happens in deepspeed 0.6.5 but NOT in 0.6.4. It blocks the integration with Lightning Lite where we until now wrapped the entire run() method with the context.
To Reproduce
import argparse
import os
import deepspeed
import torch
import torch.nn as nn
class TheModel(nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2, bias=False)
config = {
"activation_checkpointing": {
"contiguous_memory_optimization": False,
"cpu_checkpointing": False,
"partition_activations": False,
"synchronize_checkpoint_boundary": False,
},
"aio": {
"block_size": 1048576,
"overlap_events": True,
"queue_depth": 8,
"single_submit": False,
"thread_count": 1,
},
"train_micro_batch_size_per_gpu": 1,
"zero_allow_untested_optimizer": True,
"zero_optimization": {
"allgather_bucket_size": 200000000,
"allgather_partitions": True,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_bucket_size": 200000000,
"reduce_scatter": True,
"stage": 3,
"sub_group_size": 1000000000000,
},
}
def worker(rank):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12234"
os.environ["WORLD_SIZE"] = "2"
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
deepspeed.init_distributed()
model_parallel_context = deepspeed.zero.Init(
remote_device="cpu", pin_memory=True, config_dict_or_path=config, dtype=torch.float32
)
# If the context goes over the model AND the deepspeed.initilize call, we get an infinite recursion error
# This worked in 0.6.4, but not in 0.6.5
with model_parallel_context:
model = TheModel()
# If the context only goes over the model, no error occurs (unindent the lines below)
deepspeed_engine, deepspeed_optimizer, _, _ = deepspeed.initialize(
args=argparse.Namespace(device_rank=rank),
model=model,
# model_parameters=model.parameters(),
# optimizer=optimizer,
dist_init_required=False,
config=config,
)
if __name__ == "__main__":
torch.multiprocessing.spawn(worker, nprocs=2)
Output (may need to press ctrl+c on hang):
File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/deepspeed/runtime/engine.py", line 432, in __getattr__
if name in dir(self):
File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1847, in __dir__
parameters = list(self._parameters.keys())
File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/deepspeed/runtime/engine.py", line 432, in __getattr__
if name in dir(self):
File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1845, in __dir__
module_attrs = dir(self.__class__)
RecursionError: maximum recursion depth exceeded while calling a Python object
Expected behavior This worked in 0.6.4, so my assumption is that the change was unintentional. Git blame points to #1915. We weren’t able to spot exactly which lines caused it, but suspect the getattr changes on the deepspeed engine.
ds_report output
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
cpu_adagrad ............ [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
fused_lamb ............. [NO] ....... [OKAY]
[WARNING] please install triton==1.0.0 if you want to use sparse attention
sparse_attn ............ [NO] ....... [NO]
transformer ............ [NO] ....... [OKAY]
stochastic_transformer . [NO] ....... [OKAY]
[WARNING] async_io requires the dev libaio .so object and headers but these were not found.
[WARNING] async_io: please install the libaio-dev package with apt
[WARNING] If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
async_io ............... [NO] ....... [NO]
utils .................. [NO] ....... [OKAY]
quantizer .............. [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/torch']
torch version .................... 1.11.0
torch cuda version ............... 11.3
torch hip version ................ None
nvcc version ..................... 11.1
deepspeed install path ........... ['/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/deepspeed']
deepspeed info ................... 0.6.4, unknown, unknown
deepspeed wheel compiled w. ...... torch 1.11, cuda 11.3
System info (please complete the following information):
- OS: Ubuntu
- GPU count and types: 2x RTX3090
- Interconnects (if applicable) [e.g., two machines connected with 100 Gbps IB]
- Python version: 3.9
- Any other relevant info about your setup
Launcher context I’m launching using torch.multiprocessing for simplicity in reproducing, but the bug is unrelated to how it is getting launched.
Docker context No docker
Additional context
Issue Analytics
- State:
- Created a year ago
- Comments:7 (4 by maintainers)
Top GitHub Comments
@awaelchli, thanks for sharing this context. Honestly, I don’t know why it worked previously as wrapping
deepspeed.initialize()
was not an intended use forzero.Init
. So, I am quite puzzled as to the recent changes that could have broken the integration. I will try to repro the failure.Fantastic. Thank you for resolving this so quickly!