Visualize model predictions
See original GitHub issueI ran the pre-trained model in eval
mode and got this output:
python main.py --mode eval --data_type structure --config_file structure_config.json --data_root_dir data/ --model_load_path data/model/structure.pth --debug --device cpu
{'lr': 5e-05, 'lr_backbone': 1e-05, 'batch_size': 2, 'weight_decay': 0.0001, 'epochs': 20, 'lr_drop': 1, 'lr_gamma': 0.9, 'clip_max_norm': 0.1, 'backbone': 'resnet18', 'num_classes': 6, 'dilation': False, 'position_embedding': 'sine', 'emphasized_weights': {}, 'enc_layers': 6, 'dec_layers': 6, 'dim_feedforward': 2048, 'hidden_dim': 256, 'dropout': 0.1, 'nheads': 8, 'num_queries': 125, 'pre_norm': True, 'masks': False, 'aux_loss': False, 'mask_loss_coef': 1, 'dice_loss_coef': 1, 'ce_loss_coef': 1, 'bbox_loss_coef': 5, 'giou_loss_coef': 2, 'eos_coef': 0.4, 'set_cost_class': 1, 'set_cost_bbox': 5, 'set_cost_giou': 2, 'device': 'cpu', 'seed': 42, 'start_epoch': 0, 'num_workers': 2, 'data_root_dir': 'data/', 'config_file': 'structure_config.json', 'data_type': 'structure', 'model_load_path': 'data/model/structure.pth', 'metrics_save_filepath': '', 'table_words_dir': None, 'mode': 'eval', 'debug': True, 'checkpoint_freq': 1, '__module__': '__main__', '__dict__': <attribute '__dict__' of 'Args' objects>, '__weakref__': <attribute '__weakref__' of 'Args' objects>, '__doc__': None}
----------------------------------------------------------------------------------------------------
loading model
loading model from checkpoint
loading data
creating index...
index created!
Test: [0/1] eta: 0:00:00 class_error: 0.00 loss: 0.3392 (0.3392) loss_ce: 0.0231 (0.0231) loss_bbox: 0.0250 (0.0250) loss_giou: 0.2912 (0.2912) loss_ce_unscaled: 0.0231 (0.0231) class_error_unscaled: 0.0000 (0.0000) loss_bbox_unscaled: 0.0050 (0.0050) loss_giou_unscaled: 0.1456 (0.1456) cardinality_error_unscaled: 0.0000 (0.0000) time: 0.3716 data: 0.0614 max mem: 0
Test: Total time: 0:00:00 (0.3762 s / it)
Averaged stats: class_error: 0.00 loss: 0.3392 (0.3392) loss_ce: 0.0231 (0.0231) loss_bbox: 0.0250 (0.0250) loss_giou: 0.2912 (0.2912) loss_ce_unscaled: 0.0231 (0.0231) class_error_unscaled: 0.0000 (0.0000) loss_bbox_unscaled: 0.0050 (0.0050) loss_giou_unscaled: 0.1456 (0.1456) cardinality_error_unscaled: 0.0000 (0.0000)
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.619
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.750
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.629
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.619
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.506
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.638
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.638
pubmed: AP50: 0.750, AP75: 0.629, AP: 0.619, AR: 0.638
How can I visualize the model predictions on input images? like : this
Issue Analytics
- State:
- Created a year ago
- Comments:9 (1 by maintainers)
Top Results From Across the Web
Yellowbrick : Visualization for model predictions
Visualizing Prediction. Yellowbrick allows us to visualize a plot of actual target values vs predicted values generated by the model with ...
Read more >Visualizing regression model predictions
One great way to understand what your regression model is telling you is to look at what kinds of predictions it generates.
Read more >Visualize Predictions over Time – Weights & Biases - Wandb
interactively analyze the predictions to understand patterns of errors and opportunities for improvement, within the same model over time or across different ...
Read more >How to Predict and Visualize Data in one Chart
Conclusion. This article showed you how I visualized price developments and how I incorporated price predictions using linear regression models.
Read more >Exploratory Data Analysis, Visualization, Prediction Model in ...
In this article, we will take a dataset and use some popular python libraries like Numpy, Pandas, Matplotlib, Seaborn to find some meaningful ......
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
@mzhadigerov in the
predict
function fromTableStructure
class,tensor
shape manipulating process has some logic errors. It runs through but leads to yourValueError: not supported
errorWe just pushed an update to the code and documentation related to this. Please take a look at the updated documentation and how to use the
--debug
flag during evaluation to visualize results.It should produce a visualization of the (overlapping) bounding boxes directly output by the model:
…and of the final table cells after post-processing:
Cheers, Brandon