[BUG] Credentials are set, but tracking server lacks permission to list artifacts under the current s3 artifact directory
See original GitHub issueWillingness to contribute
Yes. I would be willing to contribute a fix for this bug with guidance from the MLflow community.
MLflow version
1.29
System information
Linux Ubuntu MLFlow v1.29.0
Describe the problem
Unable to list artifacts stored under s3://my-s3-bucket/1/5e295e5a735949a98588637cc3735ac4/artifacts
for the current run. Please contact your tracking server administrator to notify them of this error, which can happen when the tracking server lacks permission to list artifacts under the current run’s root artifact directory.
But the notebook says:
Registered model 'model-v' already exists. Creating a new version of this model...
2022/09/25 21:24:54 INFO mlflow.tracking._model_registry.client: Waiting up to 300 seconds for model version to finish creation. Model name: model-v, version 9 Created version '9' of model 'adept_model-v'.
Tracking information
helm install mlflow /helm_charts/mlflow --kubeconfig=my_kubeconfig --set backendStore.filepath=sqlite:///mnt/mlflow.db --set AWS_DEFAULT_REGION=us-east-1 --set AWS_SECRET_ACCESS_KEY=XXXX --set AWS_ACCESS_KEY_ID=XXXX --set defaultArtifactRoot=s3://my-s3-bucket
Code to reproduce issue
there is no code its a helm chart and the config isnt connecting to s3
Stack trace
helm install mlflow /helm_charts/mlflow --kubeconfig=my_kubeconfig --set backendStore.filepath=sqlite:///mnt/mlflow.db --set AWS_DEFAULT_REGION=us-east-1 --set AWS_SECRET_ACCESS_KEY=XXXX --set AWS_ACCESS_KEY_ID=XXXX --set defaultArtifactRoot=s3://my-s3-bucket
Other info / logs
helm install mlflow /helm_charts/mlflow --kubeconfig=my_kubeconfig --set backendStore.filepath=sqlite:///mnt/mlflow.db --set AWS_DEFAULT_REGION=us-east-1 --set AWS_SECRET_ACCESS_KEY=XXXX --set AWS_ACCESS_KEY_ID=XXXX --set defaultArtifactRoot=s3://my-s3-bucket
What component(s) does this bug affect?
-
area/artifacts
: Artifact stores and artifact logging -
area/build
: Build and test infrastructure for MLflow -
area/docs
: MLflow documentation pages -
area/examples
: Example code -
area/model-registry
: Model Registry service, APIs, and the fluent client calls for Model Registry -
area/models
: MLmodel format, model serialization/deserialization, flavors -
area/pipelines
: Pipelines, Pipeline APIs, Pipeline configs, Pipeline Templates -
area/projects
: MLproject format, project running backends -
area/scoring
: MLflow Model server, model deployment tools, Spark UDFs -
area/server-infra
: MLflow Tracking server backend -
area/tracking
: Tracking Service, tracking client APIs, autologging
What interface(s) does this bug affect?
-
area/uiux
: Front-end, user experience, plotting, JavaScript, JavaScript dev server -
area/docker
: Docker use across MLflow’s components, such as MLflow Projects and MLflow Models -
area/sqlalchemy
: Use of SQLAlchemy in the Tracking Service or Model Registry -
area/windows
: Windows support
What language(s) does this bug affect?
-
language/r
: R APIs and clients -
language/java
: Java APIs and clients -
language/new
: Proposals for new client languages
What integration(s) does this bug affect?
-
integrations/azure
: Azure and Azure ML integrations -
integrations/sagemaker
: SageMaker integrations -
integrations/databricks
: Databricks integrations
Issue Analytics
- State:
- Created a year ago
- Comments:8
im working on a helm chart you guys can take and refactor – coming soon, sit tight!!
On Sun, Oct 2, 2022 at 7:28 PM mlflow-automation @.***> wrote:
@BenWilson2 Please reply to comments.