Update Dask and Distributed minimum version to 2.12 for Python 3.8 compatibility
See original GitHub issueSystem information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Win 10
- Modin installed from (source or binary): pip
- Modin version: 0.6.3
- Python version: 3.8.0
- Exact command to reproduce: import modin.pandas as pd
Describe the problem
Fresh install of modin, failure to import. Have tried pip --force-reinstall most dependencies.
Source code / logs
UserWarning: The Dask Engine for Modin is experimental.
Traceback (most recent call last):
File "C:\WERK\backtestStrat3\backtest.py", line 2, in <module>
import modin.pandas as pd
File "C:\Python\lib\site-packages\modin\pandas\__init__.py", line 226, in <module>
client = Client()
File "C:\Python\lib\site-packages\distributed\client.py", line 727, in __init__
self.start(timeout=timeout)
File "C:\Python\lib\site-packages\distributed\client.py", line 892, in start
sync(self.loop, self._start, **kwargs)
File "C:\Python\lib\site-packages\distributed\utils.py", line 334, in sync
raise exc.with_traceback(tb)
File "C:\Python\lib\site-packages\distributed\utils.py", line 318, in f
result[0] = yield future
File "C:\Python\lib\site-packages\tornado\gen.py", line 735, in run
value = future.result()
File "C:\Python\lib\site-packages\distributed\client.py", line 955, in _start
self.cluster = await LocalCluster(
File "C:\Python\lib\site-packages\distributed\deploy\spec.py", line 364, in _
await self._start()
File "C:\Python\lib\site-packages\distributed\deploy\spec.py", line 284, in _start
self.scheduler = await self.scheduler
File "C:\Python\lib\site-packages\distributed\scheduler.py", line 1219, in start
await self.listen(addr, listen_args=self.listen_args)
File "C:\Python\lib\site-packages\distributed\core.py", line 321, in listen
await listener.start()
File "C:\Python\lib\site-packages\distributed\comm\tcp.py", line 432, in start
self.tcp_server.add_sockets(sockets)
File "C:\Python\lib\site-packages\tornado\tcpserver.py", line 165, in add_sockets
self._handlers[sock.fileno()] = add_accept_handler(
File "C:\Python\lib\site-packages\tornado\netutil.py", line 279, in add_accept_handler
io_loop.add_handler(sock, accept_handler, IOLoop.READ)
File "C:\Python\lib\site-packages\tornado\platform\asyncio.py", line 99, in add_handler
self.asyncio_loop.add_reader(fd, self._handle_events, fd, IOLoop.READ)
File "C:\Python\lib\asyncio\events.py", line 501, in add_reader
raise NotImplementedError
NotImplementedError
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "C:\Python\lib\contextlib.py", line 131, in __exit__
self.gen.throw(type, value, traceback)
File "C:\Python\lib\site-packages\distributed\utils.py", line 186, in ignoring
yield
File "C:\Python\lib\site-packages\distributed\deploy\spec.py", line 607, in close_clusters
cluster.close(timeout=10)
File "C:\Python\lib\site-packages\distributed\deploy\cluster.py", line 83, in close
return self.sync(self._close, callback_timeout=timeout)
File "C:\Python\lib\site-packages\distributed\deploy\cluster.py", line 162, in sync
return sync(self.loop, func, *args, **kwargs)
File "C:\Python\lib\site-packages\distributed\utils.py", line 334, in sync
raise exc.with_traceback(tb)
File "C:\Python\lib\site-packages\distributed\utils.py", line 318, in f
result[0] = yield future
File "C:\Python\lib\site-packages\tornado\gen.py", line 735, in run
value = future.result()
File "C:\Python\lib\site-packages\distributed\deploy\spec.py", line 380, in _close
self.scale(0)
File "C:\Python\lib\site-packages\distributed\deploy\spec.py", line 444, in scale
v["name"] for v in self.scheduler_info["workers"].values()
KeyError: 'workers'
Issue Analytics
- State:
- Created 4 years ago
- Comments:7 (4 by maintainers)
Top Results From Across the Web
Dask Installation - Dask documentation
This installs Dask and all common dependencies, including pandas and NumPy. Dask packages are maintained both on the default channel and on conda-forge....
Read more >Changelog — Dask.distributed 2022.12.1 documentation
Updated minimum supported version of Dask to 2020.12.0. Added many type annotations and updates to allow for gradually Cythonizing the scheduler.
Read more >Changelog - Dask documentation
Updated minimum supported version of pandas to 0.25.0 and NumPy to 1.15.1. Support for the pyarrow.dataset API to read_parquet .
Read more >Install Dask.Distributed
To install the latest version of dask.distributed from the conda-forge repository using conda: ... python -m pip install dask distributed --upgrade ...
Read more >Development Guidelines - Dask documentation
Dask supports Python versions 3.8, 3.9 and 3.10. Name changes are handled by the dask/compatibility.py file. Test¶. Dask employs extensive unit ...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
That’s a Tornado + Python 3.8 issue on Windows. Python 3.8 changed some defaults. I posted a comment earlier today, Dask Distributed probably needs a small patch: https://github.com/dask/distributed/pull/3249#issuecomment-569539093
@itamarst It is probably worth updating our minimum Dask and Distributed versions to ensure compatibility with Python 3.8.