question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

predicting/evaluating issue

See original GitHub issue

When predicting or evaluating with python main.py -- predict(evaluate) --pipeline_name unet --chunk_size 5000, the following error occurs:

neptune: Executing in Offline Mode. neptune: Executing in Offline Mode. 2018-05-30 21-01-50 mapping-challenge >>> predicting /home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py:895: DtypeWarning: Columns (6,7) have mixed types. Specify dtype option on import or set low_memory=False. return ctx.invoke(self.callback, **ctx.params) neptune: Executing in Offline Mode. 0%| | 0/13 [00:00<?, ?it/s]2018-05-30 21-01-56 steps >>> step xy_inference adapting inputs 2018-05-30 21-01-56 steps >>> step xy_inference loading transformer… 2018-05-30 21-01-56 steps >>> step xy_inference transforming… 2018-05-30 21-01-56 steps >>> step xy_inference adapting inputs 2018-05-30 21-01-56 steps >>> step xy_inference loading transformer… 2018-05-30 21-01-56 steps >>> step xy_inference transforming… 2018-05-30 21-01-56 steps >>> step loader adapting inputs 2018-05-30 21-01-56 steps >>> step loader loading transformer… 2018-05-30 21-01-56 steps >>> step loader transforming… 2018-05-30 21-01-56 steps >>> step unet unpacking inputs 2018-05-30 21-01-56 steps >>> step unet loading transformer… 2018-05-30 21-01-58 steps >>> step unet transforming… 2018-05-30 21-01-58 steps >>> step mask_resize adapting inputs 2018-05-30 21-01-58 steps >>> step mask_resize loading transformer… 2018-05-30 21-01-58 steps >>> step mask_resize transforming… 2018-05-30 21-01-58 steps >>> step category_mapper adapting inputs 2018-05-30 21-01-58 steps >>> step category_mapper loading transformer… 2018-05-30 21-01-58 steps >>> step category_mapper transforming… 2018-05-30 21-01-58 steps >>> step mask_erosion adapting inputs 2018-05-30 21-01-58 steps >>> step mask_erosion loading transformer… 2018-05-30 21-01-58 steps >>> step mask_erosion transforming… 2018-05-30 21-01-58 steps >>> step labeler adapting inputs 2018-05-30 21-01-58 steps >>> step labeler loading transformer… 2018-05-30 21-01-58 steps >>> step labeler transforming… 2018-05-30 21-01-58 steps >>> step mask_dilation adapting inputs 2018-05-30 21-01-58 steps >>> step mask_dilation loading transformer… 2018-05-30 21-01-58 steps >>> step mask_dilation transforming… 2018-05-30 21-01-59 steps >>> step xy_inference adapting inputs 2018-05-30 21-01-59 steps >>> step xy_inference loading transformer… 2018-05-30 21-01-59 steps >>> step xy_inference transforming… 2018-05-30 21-01-59 steps >>> step xy_inference adapting inputs 2018-05-30 21-01-59 steps >>> step xy_inference loading transformer… 2018-05-30 21-01-59 steps >>> step xy_inference transforming… 2018-05-30 21-01-59 steps >>> step loader adapting inputs 2018-05-30 21-01-59 steps >>> step loader loading transformer… 2018-05-30 21-01-59 steps >>> step loader transforming… 2018-05-30 21-01-59 steps >>> step unet unpacking inputs 2018-05-30 21-01-59 steps >>> step unet loading transformer… 2018-05-30 21-01-59 steps >>> step unet transforming… 2018-05-30 21-01-59 steps >>> step mask_resize adapting inputs 2018-05-30 21-01-59 steps >>> step mask_resize loading transformer… 2018-05-30 21-01-59 steps >>> step mask_resize transforming… 2018-05-30 21-01-59 steps >>> step score_builder adapting inputs 2018-05-30 21-01-59 steps >>> step score_builder fitting and transforming… 2018-05-30 21-08-33 steps >>> step score_builder saving transformer… 2018-05-30 21-08-33 steps >>> step output adapting inputs Traceback (most recent call last): File “main.py”, line 282, in <module> action()4, 12.69it/s] File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 722, in call return self.main(*args, **kwargs) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 697, in main rv = self.invoke(ctx) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 1066, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 895, in invoke return ctx.invoke(self.callback, **ctx.params) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 535, in invoke return callback(*args, **kwargs) File “main.py”, line 158, in predict _predict(pipeline_name, dev_mode, submit_predictions, chunk_size) File “main.py”, line 169, in _predict prediction = generate_prediction(meta_test, pipeline, logger, CATEGORY_IDS, chunk_size) File “main.py”, line 238, in generate_prediction return _generate_prediction_in_chunks(meta_data, pipeline, logger, category_ids, chunk_size) File “main.py”, line 271, in _generate_prediction_in_chunks output = pipeline.transform(data) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/steps/base.py”, line 155, in transform step_inputs = self.adapt(step_inputs) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/steps/base.py”, line 192, in adapt raw_inputs = [step_inputs[step_name][step_var] for step_name, step_var in step_mapping] File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/steps/base.py”, line 192, in <listcomp> raw_inputs = [step_inputs[step_name][step_var] for step_name, step_var in step_mapping] KeyError: ‘images’

The error above may be caused by using --chunk_size 5000, since the program crashes exactly after 5000 iterations(?). But even if I don’t specify chunk_size and just run python main.py -- predict --pipeline_name unet, another error occurs, which is the same error when I simply run python main.py -- train_evaluate_predict --pipeline_name unet --chunk_size 5000 as ReadMe suggests.

neptune: Executing in Offline Mode. neptune: Executing in Offline Mode. 2018-05-30 21-45-10 mapping-challenge >>> predicting /home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py:895: DtypeWarning: Columns (6,7) have mixed types. Specify dtype option on import or set low_memory=False. return ctx.invoke(self.callback, **ctx.params) neptune: Executing in Offline Mode. 2018-05-30 21-45-14 steps >>> step xy_inference adapting inputs 2018-05-30 21-45-14 steps >>> step xy_inference loading transformer… 2018-05-30 21-45-14 steps >>> step xy_inference transforming… 2018-05-30 21-45-14 steps >>> step xy_inference adapting inputs 2018-05-30 21-45-14 steps >>> step xy_inference loading transformer… 2018-05-30 21-45-14 steps >>> step xy_inference transforming… 2018-05-30 21-45-14 steps >>> step loader adapting inputs 2018-05-30 21-45-14 steps >>> step loader loading transformer… 2018-05-30 21-45-14 steps >>> step loader transforming… 2018-05-30 21-45-14 steps >>> step unet unpacking inputs 2018-05-30 21-45-14 steps >>> step unet loading transformer… 2018-05-30 21-45-17 steps >>> step unet transforming… 2018-05-30 21-45-17 steps >>> step mask_resize adapting inputs 2018-05-30 21-45-17 steps >>> step mask_resize loading transformer… 2018-05-30 21-45-17 steps >>> step mask_resize transforming… 2018-05-30 21-45-17 steps >>> step category_mapper adapting inputs 2018-05-30 21-45-17 steps >>> step category_mapper loading transformer… 2018-05-30 21-45-17 steps >>> step category_mapper transforming… 2018-05-30 21-45-17 steps >>> step mask_erosion adapting inputs 2018-05-30 21-45-17 steps >>> step mask_erosion loading transformer… 2018-05-30 21-45-17 steps >>> step mask_erosion transforming… 2018-05-30 21-45-17 steps >>> step labeler adapting inputs 2018-05-30 21-45-17 steps >>> step labeler loading transformer… 2018-05-30 21-45-17 steps >>> step labeler transforming… 2018-05-30 21-45-17 steps >>> step mask_dilation adapting inputs 2018-05-30 21-45-17 steps >>> step mask_dilation loading transformer… 2018-05-30 21-45-17 steps >>> step mask_dilation transforming… 2018-05-30 21-45-17 steps >>> step xy_inference adapting inputs 2018-05-30 21-45-17 steps >>> step xy_inference loading transformer… 2018-05-30 21-45-17 steps >>> step xy_inference transforming… 2018-05-30 21-45-17 steps >>> step xy_inference adapting inputs 2018-05-30 21-45-17 steps >>> step xy_inference loading transformer… 2018-05-30 21-45-17 steps >>> step xy_inference transforming… 2018-05-30 21-45-17 steps >>> step loader adapting inputs 2018-05-30 21-45-17 steps >>> step loader loading transformer… 2018-05-30 21-45-17 steps >>> step loader transforming… 2018-05-30 21-45-17 steps >>> step unet unpacking inputs 2018-05-30 21-45-17 steps >>> step unet loading transformer… 2018-05-30 21-45-17 steps >>> step unet transforming… 2018-05-30 21-45-17 steps >>> step mask_resize adapting inputs 2018-05-30 21-45-17 steps >>> step mask_resize loading transformer… 2018-05-30 21-45-17 steps >>> step mask_resize transforming… 2018-05-30 21-45-17 steps >>> step score_builder adapting inputs 2018-05-30 21-45-17 steps >>> step score_builder loading transformer… 2018-05-30 21-45-17 steps >>> step score_builder transforming… Traceback (most recent call last): File “main.py”, line 282, in <module> action()4:40, 12.93it/s] File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 722, in call return self.main(*args, **kwargs) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 697, in main rv = self.invoke(ctx) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 1066, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 895, in invoke return ctx.invoke(self.callback, **ctx.params) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/click/core.py”, line 535, in invoke return callback(*args, **kwargs) File “main.py”, line 158, in predict _predict(pipeline_name, dev_mode, submit_predictions, chunk_size) File “main.py”, line 169, in _predict prediction = generate_prediction(meta_test, pipeline, logger, CATEGORY_IDS, chunk_size) File “main.py”, line 240, in generate_prediction return _generate_prediction(meta_data, pipeline, logger, category_ids) File “main.py”, line 252, in _generate_prediction output = pipeline.transform(data) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/steps/base.py”, line 152, in transform step_inputs[input_step.name] = input_step.fit_transform(data) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/steps/base.py”, line 109, in fit_transform step_output_data = self._cached_fit_transform(step_inputs) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/steps/base.py”, line 117, in _cached_fit_transform step_output_data = self.transformer.transform(**step_inputs) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/postprocessing.py”, line 127, in transform for image, image_probabilities in tqdm(zip(images, probabilities)): File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/tqdm/_tqdm.py”, line 941, in iter for obj in iterable: File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/postprocessing.py”, line 200, in _transform for image in tqdm(images): File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/tqdm/_tqdm.py”, line 941, in iter for obj in iterable: File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/postprocessing.py”, line 137, in _transform for i, image in enumerate(images): File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/postprocessing.py”, line 174, in _transform yield erode_image(image, self.selem_size) File “/media/rs/3EBAC1C7BAC17BC1/Xavier/crowdAI/open-solution-mapping-challenge/postprocessing.py”, line 267, in erode_image eroded_image = binary_erosion(mask, selem=selem) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/skimage/morphology/misc.py”, line 37, in func_out return func(image, selem=selem, *args, **kwargs) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/skimage/morphology/binary.py”, line 42, in binary_erosion ndi.binary_erosion(image, structure=selem, output=out) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/scipy/ndimage/morphology.py”, line 370, in binary_erosion output, border_value, origin, 0, brute_force) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/scipy/ndimage/morphology.py”, line 227, in _binary_erosion if numpy.product(structure.shape,axis=0) < 1: File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/numpy/core/fromnumeric.py”, line 1897, in product return um.multiply.reduce(a, axis=axis, dtype=dtype, out=out, **kwargs) File “/home/rs/anaconda3/envs/pytorch0.3/lib/python3.6/site-packages/torch/utils/data/dataloader.py”, line 175, in handler _error_if_any_worker_fails() RuntimeError: DataLoader worker (pid 6930) is killed by signal: Killed.

Issue Analytics

  • State:open
  • Created 5 years ago
  • Comments:9

github_iconTop GitHub Comments

2reactions
hs0531commented, May 20, 2020

thank you

—Original— From: “Jakub”<notifications@github.com> Date: Wed, May 20, 2020 17:35 PM To: “neptune-ai/open-solution-mapping-challenge”<open-solution-mapping-challenge@noreply.github.com>; Cc: “hs0531”<348580064@qq.com>;“Mention”<mention@noreply.github.com>; Subject: Re: [neptune-ai/open-solution-mapping-challenge] predicting/evaluating issue (#123)

Hi @hs0531

You can do something like this: from neptune import OfflineBackend neptune.init(backend=OfflineBackend()) …

as [explained here[(https://docs.neptune.ai/neptune-client/docs/neptune.html?highlight=offline).

In that case, nothing will be logged to Neptune -> I use it usually for debugging purposes.

— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub, or unsubscribe.

0reactions
hs0531commented, May 21, 2020

Hi @hs0531

You can do something like this:

from neptune import OfflineBackend

neptune.init(backend=OfflineBackend())
...

as [explained here[(https://docs.neptune.ai/neptune-client/docs/neptune.html?highlight=offline).

In that case, nothing will be logged to Neptune -> I use it usually for debugging purposes.

which version of neptune do you install. i do follow you but get “cannot import name OfflineBackend”

Read more comments on GitHub >

github_iconTop Results From Across the Web

How to evaluate performance of prediction methods ...
Six main performance evaluation measures are introduced. ... Challenges aim to test whether certain problems can be addressed with existing ...
Read more >
What's a good prediction? Challenges in ... - SAGE Journals
The most common approaches to evaluating models is to assess their accuracy with respect to observable values. However, the prevailing reliance ...
Read more >
Predictive Performance Models Evaluation Metrics
All problems a performance evaluation model can solve fall into one of two categories: a classification problem or a regression problem.
Read more >
An Overview on Evaluating and Predicting Scholarly Article ...
Scholars can collect such data to solve the problems of scholarly impact evaluation. They can obtain useful insights from such datasets by ...
Read more >
How Do You Evaluate Your Own Predictions?
A forecast should contain a probability estimation. The future is fundamentally uncertain, and forecasters should be allowed to express their ...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found