question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

[Bug] run object_detection.exe result some error results.

See original GitHub issue

Checklist

  • I have searched related issues but cannot get the expected help.
  • 2. I have read the FAQ documentation but cannot get the expected help.
  • 3. The bug has not been fixed in the latest version.

Describe the bug

.\object_detection.exe cuda E:/fitow_git/Mmdet/mmdeploy-0.5.0/work_dir E:/fitow_git/Mmdet/mmdeploy-0.11.0/demo/resources/det.jpg loading mmdeploy_execution … loading mmdeploy_cpu_device … loading mmdeploy_cuda_device … loading mmdeploy_graph … loading mmdeploy_directory_model … [2022-12-20 16:03:04.954] [mmdeploy] [info] [model.cpp:95] Register ‘DirectoryModel’ loading mmdeploy_transform … loading mmdeploy_cpu_transform_impl … loading mmdeploy_cuda_transform_impl … loading mmdeploy_transform_module … loading mmdeploy_trt_net … loading mmdeploy_net_module … loading mmdeploy_mmcls … loading mmdeploy_mmdet … loading mmdeploy_mmseg … loading mmdeploy_mmocr … loading mmdeploy_mmedit … loading mmdeploy_mmpose … loading mmdeploy_mmrotate … [2022-12-20 16:03:05.026] [mmdeploy] [info] [model.cpp:38] DirectoryModel successfully load sdk model E:/fitow_git/Mmdet/mmdeploy-0.5.0/work_dir [2022-12-20 16:03:05.116] [mmdeploy] [info] [common.h:29] config: { “context”: { “device”: “<any>”, “stream”: “<any>” }, “input”: [ “image” ], “name”: “mmdetection”, “output”: [ “det” ], “params”: { “model”: “<any>” }, “type”: “Inference” } [2022-12-20 16:03:05.116] [mmdeploy] [info] [common.h:29] config: { “context”: { “device”: “<any>”, “model”: “<any>”, “stream”: “<any>” }, “input”: [ “img” ], “module”: “Transform”, “name”: “Preprocess”, “output”: [ “prep_output” ], “transforms”: [ { “type”: “LoadImageFromFile” }, { “keep_ratio”: false, “size”: [ 800, 1344 ], “type”: “Resize” }, { “mean”: [ 123.675, 116.28, 103.53 ], “std”: [ 58.395, 57.12, 57.375 ], “to_rgb”: true, “type”: “Normalize” }, { “size_divisor”: 1, “type”: “Pad” }, { “type”: “DefaultFormatBundle” }, { “keys”: [ “img” ], “meta_keys”: [ “flip”, “img_shape”, “scale_factor”, “pad_shape”, “valid_ratio”, “ori_shape”, “ori_filename”, “img_norm_cfg”, “flip_direction”, “filename” ], “type”: “Collect” } ], “type”: “Task” } [2022-12-20 16:03:05.122] [mmdeploy] [info] [common.h:29] config: { “context”: { “device”: “<any>”, “model”: “<any>”, “stream”: “<any>” }, “input”: [ “img” ], “module”: “Transform”, “name”: “Preprocess”, “output”: [ “prep_output” ], “transforms”: [ { “type”: “LoadImageFromFile” }, { “keep_ratio”: false, “size”: [ 800, 1344 ], “type”: “Resize” }, { “mean”: [ 123.675, 116.28, 103.53 ], “std”: [ 58.395, 57.12, 57.375 ], “to_rgb”: true, “type”: “Normalize” }, { “size_divisor”: 1, “type”: “Pad” }, { “type”: “DefaultFormatBundle” }, { “keys”: [ “img” ], “meta_keys”: [ “flip”, “img_shape”, “scale_factor”, “pad_shape”, “valid_ratio”, “ori_shape”, “ori_filename”, “img_norm_cfg”, “flip_direction”, “filename” ], “type”: “Collect” } ], “type”: “Task” } [2022-12-20 16:03:05.127] [mmdeploy] [info] [common.h:29] config: { “context”: { “device”: “<any>”, “model”: “<any>”, “stream”: “<any>” }, “input”: [ “prep_output” ], “input_map”: { “img”: “input” }, “module”: “Net”, “name”: “fasterrcnn”, “output”: [ “infer_output” ], “type”: “Task” } [2022-12-20 16:03:05.128] [mmdeploy] [info] [common.h:29] config: { “context”: { “device”: “<any>”, “model”: “<any>”, “stream”: “<any>” }, “input”: [ “prep_output” ], “input_map”: { “img”: “input” }, “module”: “Net”, “name”: “fasterrcnn”, “output”: [ “infer_output” ], “type”: “Task” } [2022-12-20 16:03:05.129] [mmdeploy] [info] [cuda_device.cpp:61] Default CUDA allocator initialized [2022-12-20 16:03:07.131] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.5.2 [2022-12-20 16:03:07.397] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.5.2 [2022-12-20 16:03:07.852] [mmdeploy] [info] [common.h:29] config: { “component”: “ResizeBBox”, “context”: { “device”: “<any>”, “model”: “<any>”, “stream”: “<any>” }, “input”: [ “prep_output”, “infer_output” ], “module”: “mmdet”, “name”: “postprocess”, “output”: [ “post_output” ], “params”: { “min_bbox_size”: 0, “rcnn”: { “max_per_img”: 100, “nms”: { “iou_threshold”: 0.5, “type”: “nms” }, “score_thr”: 0.05 }, “rpn”: { “max_per_img”: 1000, “min_bbox_size”: 0, “nms”: { “iou_threshold”: 0.7, “type”: “nms” }, “nms_pre”: 1000 }, “score_thr”: 0.05 }, “type”: “Task” } [2022-12-20 16:03:07.854] [mmdeploy] [info] [common.h:29] config: { “component”: “ResizeBBox”, “context”: { “device”: “<any>”, “model”: “<any>”, “stream”: “<any>” }, “input”: [ “prep_output”, “infer_output” ], “module”: “mmdet”, “name”: “postprocess”, “output”: [ “post_output” ], “params”: { “min_bbox_size”: 0, “rcnn”: { “max_per_img”: 100, “nms”: { “iou_threshold”: 0.5, “type”: “nms” }, “score_thr”: 0.05 }, “rpn”: { “max_per_img”: 1000, “min_bbox_size”: 0, “nms”: { “iou_threshold”: 0.7, “type”: “nms” }, “nms_pre”: 1000 }, “score_thr”: 0.05 }, “type”: “Task” } [2022-12-20 16:03:07.860] [mmdeploy] [warning] [bulk.h:39] fallback Bulk implementation [2022-12-20 16:03:07.863] [mmdeploy] [warning] [bulk.h:39] fallback Bulk implementation [2022-12-20 16:03:08.074] [mmdeploy] [warning] [bulk.h:39] fallback Bulk implementation bbox_count=100 box 0, left=382.62, top=141.44, right=428.33, bottom=216.70, label=37, score=0.0757 box 1, left=11.13, top=115.02, right=86.49, bottom=145.58, label=5, score=0.0756 box 2, left=0.00, top=113.96, right=20.62, bottom=145.18, label=29, score=0.0709 box 3, left=260.95, top=105.02, right=321.90, bottom=153.99, label=5, score=0.0699 box 4, left=242.86, top=166.66, right=433.81, bottom=426.00, label=37, score=0.0699 box 5, left=286.67, top=124.03, right=438.10, bottom=156.26, label=10, score=0.0695 box 6, left=142.50, top=98.41, right=169.64, bottom=106.82, label=10, score=0.0684 box 7, left=202.50, top=278.62, right=463.33, bottom=360.82, label=28, score=0.0684 box 8, left=119.29, top=72.32, right=390.71, bottom=139.58, label=12, score=0.0682 box 9, left=213.21, top=162.13, right=318.33, bottom=354.41, label=29, score=0.0682

Reproduction

mmdeploy-0.5.0\build\install\bin>.\object_detection.exe cuda E:/Mmdet/mmdeploy-0.5.0/work_dir E:/Mmdet/mmdeploy-0.11.0/demo/resources/det.jpg

Environment

2022-12-20 15:18:29,317 - mmdeploy - INFO - **********Environmental information**********
fatal: not a git repository (or any of the parent directories): .git
2022-12-20 15:18:53,191 - mmdeploy - INFO - sys.platform: win32
2022-12-20 15:18:53,191 - mmdeploy - INFO - Python: 3.8.8 (default, Apr 13 2021, 15:08:03) [MSC v.1916 64 bit (AMD64)]
2022-12-20 15:18:53,191 - mmdeploy - INFO - CUDA available: True
2022-12-20 15:18:53,191 - mmdeploy - INFO - GPU 0: NVIDIA GeForce GTX 1660 Ti
2022-12-20 15:18:53,191 - mmdeploy - INFO - CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4       
2022-12-20 15:18:53,191 - mmdeploy - INFO - NVCC: Cuda compilation tools, release 11.4, V11.4.48
2022-12-20 15:18:53,191 - mmdeploy - INFO - MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.29.30137 版
2022-12-20 15:18:53,192 - mmdeploy - INFO - GCC: n/a
2022-12-20 15:18:53,192 - mmdeploy - INFO - PyTorch: 1.11.0+cu113
2022-12-20 15:18:53,192 - mmdeploy - INFO - PyTorch compiling details: PyTorch built with:
  - C++ Version: 199711
  - MSVC 192829337
  - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications    
  - Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
  - OpenMP 2019
  - LAPACK is enabled (usually provided by MKL)
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.2
  - Magma 2.5.4
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,

2022-12-20 15:18:53,195 - mmdeploy - INFO - TorchVision: 0.12.0+cu113
2022-12-20 15:18:53,196 - mmdeploy - INFO - OpenCV: 4.5.2
2022-12-20 15:18:53,196 - mmdeploy - INFO - MMCV: 1.5.2
2022-12-20 15:18:53,196 - mmdeploy - INFO - MMCV Compiler: MSVC 192930140
2022-12-20 15:18:53,196 - mmdeploy - INFO - MMCV CUDA Compiler: 11.3
2022-12-20 15:18:53,197 - mmdeploy - INFO - MMDeploy: 0.5.0+
2022-12-20 15:18:53,197 - mmdeploy - INFO -

2022-12-20 15:18:53,197 - mmdeploy - INFO - **********Backend information**********
2022-12-20 15:18:57,257 - mmdeploy - INFO - onnxruntime: 1.12.0 ops_is_avaliable : True
2022-12-20 15:18:57,327 - mmdeploy - INFO - tensorrt: 8.2.3.0   ops_is_avaliable : True
2022-12-20 15:18:57,384 - mmdeploy - INFO - ncnn: None  ops_is_avaliable : False
2022-12-20 15:18:57,393 - mmdeploy - INFO - pplnn_is_avaliable: False
2022-12-20 15:18:57,404 - mmdeploy - INFO - openvino_is_avaliable: False
2022-12-20 15:18:57,405 - mmdeploy - INFO -

2022-12-20 15:18:57,405 - mmdeploy - INFO - **********Codebase information**********
2022-12-20 15:18:57,417 - mmdeploy - INFO - mmdet:      2.25.0
2022-12-20 15:18:57,417 - mmdeploy - INFO - mmseg:      None
2022-12-20 15:18:57,417 - mmdeploy - INFO - mmcls:      None
2022-12-20 15:18:57,418 - mmdeploy - INFO - mmocr:      None
2022-12-20 15:18:57,418 - mmdeploy - INFO - mmedit:     None
2022-12-20 15:18:57,419 - mmdeploy - INFO - mmdet3d:    None
2022-12-20 15:18:57,419 - mmdeploy - INFO - mmpose:     None
2022-12-20 15:18:57,420 - mmdeploy - INFO - mmrotate:   None

Error traceback

No response

Issue Analytics

  • State:closed
  • Created 9 months ago
  • Comments:7

github_iconTop GitHub Comments

1reaction
lvhan028commented, Dec 20, 2022

In the ‘E:\mmdeploy-0.5.0\work_dir’, there supposed to be ‘output_pytorch.jpg’ and ‘output_tensorrt.jpg’, which shows the bounding boxes predicted by pytorch and tensorrt respectively, are they correct?

0reactions
Viki-researchercommented, Dec 21, 2022

In the ‘E:\mmdeploy-0.5.0\work_dir’, there supposed to be ‘output_pytorch.jpg’ and ‘output_tensorrt.jpg’, which shows the bounding boxes predicted by pytorch and tensorrt respectively, are they correct?

Thank you very much for your reply,the problem reason is the model pipeline have some wrong modify,it’s ok now.

Read more comments on GitHub >

github_iconTop Results From Across the Web

object_detection/protos/*.proto: No such file or directory #2930
I moved protoc.exe to "\models\models-master\research" and used... protoc --python_out=. object_detection\protos\*.proto ...without any errors.
Read more >
Portal for ArcGIS 11.0 Deep Learning Studio Patch
BUG -000153278 - In Deep Learning Studio, the Run inference tool fails to save the result layer as an item if the user...
Read more >
Part 2 (Training YOLOv4 Darknet on Custom Dataset) - YouTube
Train YOLOV4 custom object detector using darknet. This second part of the tutorial explains steps to train a custom object detection model ...
Read more >
Remove Lingering Objects that cause AD Replication error ...
Repldiag.exe is another tool that will automate lingering object removal. It is good for most environments, but it does not provide an interface ......
Read more >
How to Develop a Real-Time Object Detection System for ...
Framework/technology. There are several frameworks capable of running on Android, such as TensorFlow/TensorFlow Lite, PyTorch/Mobile, and OpenCV ...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found