How to use albu data augmentation in HTC algorithm?
See original GitHub issueChecklist
- I have searched related issues but cannot get the expected help. yes
- The bug has not been fixed in the latest version. yes
Describe the bug when i use albu data augmentation in htc_x101_32x4d_fpn without semantic ,like albu example(mask rcnn):
dataset_type = 'CocoDataset'
data_root = '/disk2/data/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
albu_train_transforms = [
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=30,
interpolation=2,
p=0.5),
dict(
type='RandomBrightnessContrast',
brightness_limit=[0.1, 0.3],
contrast_limit=[0.1, 0.3],
p=0.2),
dict(
type='OneOf',
transforms=[
dict(
type='RGBShift',
r_shift_limit=10,
g_shift_limit=10,
b_shift_limit=10,
p=1.0),
dict(
type='HueSaturationValue',
hue_shift_limit=20,
sat_shift_limit=30,
val_shift_limit=20,
p=1.0)
],
p=0.1),
dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
dict(type='ChannelShuffle', p=0.1),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.1),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations', with_bbox=True, with_mask=True),
#dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(
type='Resize',
img_scale=[(1400, 600), (1400, 1024)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.0),
dict(type='Pad', size_divisor=32),
dict(
type='Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_labels'],
min_visibility=0.0,
filter_lost_elements=True),
keymap={
'img': 'image',
'gt_masks': 'masks',
'gt_bboxes': 'bboxes'
},
update_pad_shape=False,
skip_img_without_anno=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
Reproduction
- What command or script did you run?
#!/bin/bash
export PYTHONPATH=`pwd`:$PYTHONPATH
CUDA_VISIBLE_DEVICES=2 python tools/train.py configs/htc/zh_htc_x101_32x4d_fpn_20e_mstrain_imgaug_8gpu.py
- Did you make any modifications on the code or config? Did you understand what you have modified? No change!
- What dataset did you use? custom datasets (like coco ) Environment
- OS: centos 7.2
- GCC :4.9.4
- PyTorch version : 1.1.0
- How you installed PyTorch : pip
- GPU model : V100 *8
- CUDA and CUDNN version: CUDA9 and cudnn7
Error traceback If applicable, paste the error trackback here.
2019-11-28 14:09:55,816 - INFO - Start running, host: suishou.zh@pic-plat-dev-02.et2, work_dir: /disk2/data/suishou.zh/poi_project/temp/mmdetection/work_dirs/htc_without_semantic_x101_32x4d_fpn_20e
2019-11-28 14:09:55,816 - INFO - workflow: [('train', 1)], max: 20 epochs
Traceback (most recent call last):
File "tools/train.py", line 108, in <module>
main()
File "tools/train.py", line 104, in main
logger=logger)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/apis/train.py", line 60, in train_detector
_non_dist_train(model, dataset, cfg, validate=validate)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/apis/train.py", line 232, in _non_dist_train
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
File "/home/suishou.zh/open-mmlab/lib/python3.6/site-packages/mmcv/runner/runner.py", line 358, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/suishou.zh/open-mmlab/lib/python3.6/site-packages/mmcv/runner/runner.py", line 264, in train
self.model, data_batch, train_mode=True, **kwargs)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/apis/train.py", line 38, in batch_processor
losses = model(**data)
File "/home/suishou.zh/open-mmlab/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
result = self.forward(*input, **kwargs)
File "/home/suishou.zh/open-mmlab/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward
return self.module(*inputs[0], **kwargs[0])
File "/home/suishou.zh/open-mmlab/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
result = self.forward(*input, **kwargs)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/core/fp16/decorators.py", line 49, in new_func
return old_func(*args, **kwargs)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/models/detectors/base.py", line 117, in forward
return self.forward_train(img, img_meta, **kwargs)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/models/detectors/htc.py", line 296, in forward_train
semantic_feat)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/models/detectors/htc.py", line 109, in _mask_forward_train
rcnn_train_cfg)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/models/mask_heads/fcn_mask_head.py", line 111, in get_target
gt_masks, rcnn_train_cfg)
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/core/mask/mask_target.py", line 12, in mask_target
mask_targets = torch.cat(list(mask_targets))
File "/disk2/data/suishou.zh/poi_project/temp/mmdetection/mmdet/core/mask/mask_target.py", line 22, in mask_target_single
_, maxh, maxw = gt_masks.shape
AttributeError: 'list' object has no attribute 'shape'
Issue Analytics
- State:
- Created 4 years ago
- Comments:6 (1 by maintainers)
Top Results From Across the Web
Image augmentation for classification - Albumentations
Step 1. Import the required libraries. Step 2. Define an augmentation pipeline. Step 3. Read images from the disk. ... Step 4. Pass...
Read more >A Comprehensive Survey of Image Augmentation ... - arXiv
Specifically, we first explain why different image augmentation algorithms have been designed and leveraged across diverse applications. More ...
Read more >Data Augmentation in Python: Everything You Need to Know
To augment images when using TensorFlow or Keras as our DL framework, we can: Write our own augmentation pipelines or layers using tf.image....
Read more >Data Augmentation | How to use Deep Learning when you ...
So, if I use ALL of these techniques, my ML algorithm would be robust right? Is it really worth the effort? Further Reading....
Read more >Soma da altın fiyatları - dasmiyesin.online
Serbest Piyasa 2022-09-27 Mahjong zorlu beyin jimnastiği 0793 Gram altın satış: 892,28 85 Soma arsa fiyatları (imarlı ort İşte 6 Mayıs Cuma günü...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
How to use albu aug in HTC with
gt_semantic_seg
?Thanks for reporting the bug, #1818 fix this error.