why train loss is too big
See original GitHub issueI use default config about configs/faster_rcnn_r50_fpn_1x.py
, and train.py parameters are configs/faster_rcnn_r50_fpn_1x.py
In the Epoch [1][1000/58633]
, the training loss becomes very big. Is this normal? Why?
and the log is that
/home/mf/anaconda3/envs/open-mmlab/bin/python /home/mf/w_public/mmdetection/tools/train.py configs/faster_rcnn_r50_fpn_1x.py
2019-07-30 10:02:20,710 - INFO - Distributed training: False
2019-07-30 10:02:21,079 - INFO - load model from: modelzoo://resnet50
2019-07-30 10:02:21,425 - WARNING - unexpected key in source state_dict: fc.weight, fc.bias
missing keys in source state_dict: layer1.2.bn1.num_batches_tracked, layer3.5.bn2.num_batches_tracked, bn1.num_batches_tracked, layer3.1.bn1.num_batches_tracked, layer4.0.bn2.num_batches_tracked, layer2.1.bn3.num_batches_tracked, layer3.2.bn1.num_batches_tracked, layer1.0.bn1.num_batches_tracked, layer3.0.bn2.num_batches_tracked, layer2.3.bn3.num_batches_tracked, layer4.1.bn1.num_batches_tracked, layer1.1.bn2.num_batches_tracked, layer4.0.bn3.num_batches_tracked, layer4.1.bn2.num_batches_tracked, layer2.0.downsample.1.num_batches_tracked, layer3.1.bn2.num_batches_tracked, layer4.0.bn1.num_batches_tracked, layer3.5.bn3.num_batches_tracked, layer2.2.bn2.num_batches_tracked, layer1.1.bn1.num_batches_tracked, layer3.1.bn3.num_batches_tracked, layer4.1.bn3.num_batches_tracked, layer2.2.bn1.num_batches_tracked, layer1.2.bn2.num_batches_tracked, layer4.0.downsample.1.num_batches_tracked, layer3.3.bn2.num_batches_tracked, layer3.4.bn2.num_batches_tracked, layer4.2.bn1.num_batches_tracked, layer3.0.downsample.1.num_batches_tracked, layer3.2.bn2.num_batches_tracked, layer3.2.bn3.num_batches_tracked, layer3.3.bn3.num_batches_tracked, layer3.0.bn1.num_batches_tracked, layer2.3.bn1.num_batches_tracked, layer3.4.bn3.num_batches_tracked, layer2.3.bn2.num_batches_tracked, layer3.5.bn1.num_batches_tracked, layer2.0.bn3.num_batches_tracked, layer3.3.bn1.num_batches_tracked, layer1.1.bn3.num_batches_tracked, layer3.4.bn1.num_batches_tracked, layer2.0.bn1.num_batches_tracked, layer2.1.bn1.num_batches_tracked, layer2.2.bn3.num_batches_tracked, layer3.0.bn3.num_batches_tracked, layer1.0.bn3.num_batches_tracked, layer4.2.bn2.num_batches_tracked, layer1.0.downsample.1.num_batches_tracked, layer2.0.bn2.num_batches_tracked, layer4.2.bn3.num_batches_tracked, layer2.1.bn2.num_batches_tracked, layer1.2.bn3.num_batches_tracked, layer1.0.bn2.num_batches_tracked
loading annotations into memory...
Done (t=9.63s)
creating index...
index created!
2019-07-30 10:02:35,009 - INFO - Start running, host: mf@mf-System-Product-Name, work_dir: /home/mf/w_public/mmdetection/work_dirs/faster_rcnn_r50_fpn_1x
2019-07-30 10:02:35,009 - INFO - workflow: [('train', 1)], max: 12 epochs
2019-07-30 10:02:54,084 - INFO - Epoch [1][50/58633] lr: 0.00797, eta: 3 days, 2:32:28, time: 0.381, data_time: 0.009, memory: 3791, loss_rpn_cls: 0.3375, loss_rpn_bbox: 0.0867, loss_cls: 0.6763, acc: 92.3008, loss_bbox: 0.1246, loss: 1.2251
2019-07-30 10:03:12,616 - INFO - Epoch [1][100/58633] lr: 0.00931, eta: 3 days, 1:29:03, time: 0.371, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.2140, loss_rpn_bbox: 0.0703, loss_cls: 0.5111, acc: 93.2188, loss_bbox: 0.1525, loss: 0.9479
2019-07-30 10:03:31,010 - INFO - Epoch [1][150/58633] lr: 0.01064, eta: 3 days, 0:56:47, time: 0.368, data_time: 0.003, memory: 3791, loss_rpn_cls: 0.1666, loss_rpn_bbox: 0.0609, loss_cls: 0.5251, acc: 92.8848, loss_bbox: 0.1633, loss: 0.9159
2019-07-30 10:03:49,761 - INFO - Epoch [1][200/58633] lr: 0.01197, eta: 3 days, 1:01:25, time: 0.375, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.2267, loss_rpn_bbox: 0.0921, loss_cls: 0.6174, acc: 91.6387, loss_bbox: 0.1854, loss: 1.1217
2019-07-30 10:04:08,190 - INFO - Epoch [1][250/58633] lr: 0.01331, eta: 3 days, 0:49:04, time: 0.369, data_time: 0.003, memory: 3791, loss_rpn_cls: 0.1873, loss_rpn_bbox: 0.0758, loss_cls: 0.6097, acc: 91.6562, loss_bbox: 0.1857, loss: 1.0585
2019-07-30 10:04:26,377 - INFO - Epoch [1][300/58633] lr: 0.01464, eta: 3 days, 0:31:12, time: 0.364, data_time: 0.003, memory: 3791, loss_rpn_cls: 0.1744, loss_rpn_bbox: 0.0717, loss_cls: 0.5832, acc: 91.6348, loss_bbox: 0.1907, loss: 1.0200
2019-07-30 10:04:44,331 - INFO - Epoch [1][350/58633] lr: 0.01597, eta: 3 days, 0:10:34, time: 0.359, data_time: 0.003, memory: 3791, loss_rpn_cls: 0.1876, loss_rpn_bbox: 0.0841, loss_cls: 0.5484, acc: 91.5840, loss_bbox: 0.1910, loss: 1.0112
2019-07-30 10:05:02,978 - INFO - Epoch [1][400/58633] lr: 0.01731, eta: 3 days, 0:15:18, time: 0.373, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.1606, loss_rpn_bbox: 0.0639, loss_cls: 0.6050, acc: 92.0977, loss_bbox: 0.1788, loss: 1.0083
2019-07-30 10:05:21,395 - INFO - Epoch [1][450/58633] lr: 0.01864, eta: 3 days, 0:12:57, time: 0.368, data_time: 0.003, memory: 3791, loss_rpn_cls: 0.2056, loss_rpn_bbox: 0.0768, loss_cls: 0.6062, acc: 91.5117, loss_bbox: 0.1879, loss: 1.0766
2019-07-30 10:05:39,837 - INFO - Epoch [1][500/58633] lr: 0.01997, eta: 3 days, 0:11:36, time: 0.369, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.1487, loss_rpn_bbox: 0.0768, loss_cls: 0.5943, acc: 91.7441, loss_bbox: 0.1892, loss: 1.0090
2019-07-30 10:05:58,293 - INFO - Epoch [1][550/58633] lr: 0.02000, eta: 3 days, 0:10:43, time: 0.369, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.3145, loss_rpn_bbox: 0.1089, loss_cls: 0.4854, acc: 93.7539, loss_bbox: 0.1304, loss: 1.0391
2019-07-30 10:06:16,786 - INFO - Epoch [1][600/58633] lr: 0.02000, eta: 3 days, 0:10:40, time: 0.370, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.2104, loss_rpn_bbox: 0.0980, loss_cls: 0.5118, acc: 93.2090, loss_bbox: 0.1509, loss: 0.9711
2019-07-30 10:06:35,303 - INFO - Epoch [1][650/58633] lr: 0.02000, eta: 3 days, 0:11:00, time: 0.370, data_time: 0.003, memory: 3791, loss_rpn_cls: 0.2558, loss_rpn_bbox: 0.1247, loss_cls: 0.5771, acc: 91.3262, loss_bbox: 0.1899, loss: 1.1476
2019-07-30 10:06:54,683 - INFO - Epoch [1][700/58633] lr: 0.02000, eta: 3 days, 0:25:41, time: 0.388, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.2355, loss_rpn_bbox: 0.0966, loss_cls: 0.4322, acc: 93.9688, loss_bbox: 0.1319, loss: 0.8962
2019-07-30 10:07:13,302 - INFO - Epoch [1][750/58633] lr: 0.02000, eta: 3 days, 0:26:29, time: 0.372, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.2131, loss_rpn_bbox: 0.0831, loss_cls: 0.4883, acc: 93.4316, loss_bbox: 0.1440, loss: 0.9285
2019-07-30 10:07:32,554 - INFO - Epoch [1][800/58633] lr: 0.02000, eta: 3 days, 0:36:25, time: 0.385, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.3003, loss_rpn_bbox: 0.1204, loss_cls: 0.5138, acc: 93.3008, loss_bbox: 0.1436, loss: 1.0781
2019-07-30 10:07:50,711 - INFO - Epoch [1][850/58633] lr: 0.02000, eta: 3 days, 0:30:03, time: 0.363, data_time: 0.004, memory: 3791, loss_rpn_cls: 0.4217, loss_rpn_bbox: 0.2851, loss_cls: 0.8004, acc: 94.0859, loss_bbox: 0.1257, loss: 1.6328
2019-07-30 10:08:08,752 - INFO - Epoch [1][900/58633] lr: 0.02000, eta: 3 days, 0:22:50, time: 0.361, data_time: 0.004, memory: 3791, loss_rpn_cls: 156.2920, loss_rpn_bbox: 62.4721, loss_cls: 364.4698, acc: 82.0712, loss_bbox: 41.8640, loss: 625.0979
2019-07-30 10:08:26,768 - INFO - Epoch [1][950/58633] lr: 0.02000, eta: 3 days, 0:16:03, time: 0.360, data_time: 0.003, memory: 3791, loss_rpn_cls: 447235.8581, loss_rpn_bbox: 526061.7554, loss_cls: 4071407055.3989, acc: 80.6797, loss_bbox: 246750333.2189, loss: 4319130658.6691
2019-07-30 10:08:45,165 - INFO - Epoch [1][1000/58633] lr: 0.02000, eta: 3 days, 0:14:23, time: 0.368, data_time: 0.004, memory: 3791, loss_rpn_cls: 663974819297698.0000, loss_rpn_bbox: 86506371132308.3125, loss_cls: 9498945394371206.0000, acc: 72.3992, loss_bbox: 333746037078607.0625, loss: 10583172569332912.0000
2019-07-30 10:09:03,294 - INFO - Epoch [1][1050/58633] lr: 0.02000, eta: 3 days, 0:09:51, time: 0.363, data_time: 0.004, memory: 3791, loss_rpn_cls: 1364391539087953075634176.0000, loss_rpn_bbox: 567411899414833660952576.0000, loss_cls: 138728180119747246268874752.0000, acc: 91.6599, loss_bbox: 13771815597760854209069056.0000, loss: 154431800497686002255527936.0000
2019-07-30 10:09:21,490 - INFO - Epoch [1][1100/58633] lr: 0.02000, eta: 3 days, 0:06:25, time: 0.364, data_time: 0.004, memory: 3791, loss_rpn_cls: 7248172595877238437576704.0000, loss_rpn_bbox: 2399984347958531225288704.0000, loss_cls: 749459289716433297625579520.0000, acc: 94.6113, loss_bbox: 77432702443750119213891584.0000, loss: 836540162127489252454301696.0000
2019-07-30 10:09:39,857 - INFO - Epoch [1][1150/58633] lr: 0.02000, eta: 3 days, 0:05:00, time: 0.367, data_time: 0.003, memory: 3791, loss_rpn_cls: 7019707082215567669592064.0000, loss_rpn_bbox: 4737551173594944490176512.0000, loss_cls: 952746356550775618484043776.0000, acc: 94.1113, loss_bbox: 116985685205953382291865600.0000, loss: 1081489303707954757133926400.0000
2019-07-30 10:09:58,116 - INFO - Epoch [1][1200/58633] lr: 0.02000, eta: 3 days, 0:02:37, time: 0.365, data_time: 0.003, memory: 3791, loss_rpn_cls: 6623643306337326952611840.0000, loss_rpn_bbox: 1677773494959891533529088.0000, loss_cls: 676409084427291037360193536.0000, acc: 95.1016, loss_bbox: 61674887396537672514142208.0000, loss: 746385394081858182862340096.0000
2019-07-30 10:10:16,655 - INFO - Epoch [1][1250/58633] lr: 0.02000, eta: 3 days, 0:03:02, time: 0.371, data_time: 0.004, memory: 3791, loss_rpn_cls: 6306572437338864673095680.0000, loss_rpn_bbox: 2397626350338094825209856.0000, loss_cls: 702858893330790020814995456.0000, acc: 94.9922, loss_bbox: 85713648393600203787075584.0000, loss: 797276741770739209455271936.0000
2019-07-30 10:10:35,082 - INFO - Epoch [1][1300/58633] lr: 0.02000, eta: 3 days, 0:02:22, time: 0.369, data_time: 0.004, memory: 3791, loss_rpn_cls: 5784541178443221308538880.0000, loss_rpn_bbox: 1592911890236547304259584.0000, loss_cls: 584144961218907285242249216.0000, acc: 94.7910, loss_bbox: 60132916379517915439824896.0000, loss: 651655322485019431535640576.0000
2019-07-30 10:10:53,984 - INFO - Epoch [1][1350/58633] lr: 0.02000, eta: 3 days, 0:05:51, time: 0.378, data_time: 0.004, memory: 3791, loss_rpn_cls: 5342794156158588918169600.0000, loss_rpn_bbox: 1858728942494471866548224.0000, loss_cls: 592920503840435445530886144.0000, acc: 94.7520, loss_bbox: 69530009335973618376507392.0000, loss: 669652035893432084856832000.0000
2019-07-30 10:11:13,073 - INFO - Epoch [1][1400/58633] lr: 0.02000, eta: 3 days, 0:10:38, time: 0.382, data_time: 0.004, memory: 3791, loss_rpn_cls: 5165773008838793266987008.0000, loss_rpn_bbox: 2311574336324449930838016.0000, loss_cls: 596068163900160765641883648.0000, acc: 94.6641, loss_bbox: 61864457022218112606404608.0000, loss: 665409970260547009163296768.0000
2019-07-30 10:11:31,742 - INFO - Epoch [1][1450/58633] lr: 0.02000, eta: 3 days, 0:11:41, time: 0.373, data_time: 0.004, memory: 3791, loss_rpn_cls: 4610083048248850272747520.0000, loss_rpn_bbox: 1432003406626812493561856.0000, loss_cls: 548534009977692903822065664.0000, acc: 95.3594, loss_bbox: 61887055758006783571918848.0000, loss: 616463152732647734380593152.0000
2019-07-30 10:11:51,226 - INFO - Epoch [1][1500/58633] lr: 0.02000, eta: 3 days, 0:18:59, time: 0.390, data_time: 0.004, memory: 3791, loss_rpn_cls: 4342793929019683183263744.0000, loss_rpn_bbox: 2127836828204648078770176.0000, loss_cls: 443916903405240911975677952.0000, acc: 95.3457, loss_bbox: 47187610007356827836088320.0000, loss: 497575150226156379118239744.0000
2019-07-30 10:12:11,386 - INFO - Epoch [1][1550/58633] lr: 0.02000, eta: 3 days, 0:30:54, time: 0.403, data_time: 0.004, memory: 3791, loss_rpn_cls: 3947261021612846834778112.0000, loss_rpn_bbox: 1148280921352944960405504.0000, loss_cls: 456843004510417720971362304.0000, acc: 95.1367, loss_bbox: 43518018316285994678091776.0000, loss: 505456564082218576423944192.0000
2019-07-30 10:12:31,639 - INFO - Epoch [1][1600/58633] lr: 0.02000, eta: 3 days, 0:42:44, time: 0.405, data_time: 0.004, memory: 3791, loss_rpn_cls: 3707260822292568108695552.0000, loss_rpn_bbox: 1797451293467601050533888.0000, loss_cls: 439920061639958484962246656.0000, acc: 94.9512, loss_bbox: 48417321447056923657502720.0000, loss: 493842091228754245505253376.0000
2019-07-30 10:12:50,501 - INFO - Epoch [1][1650/58633] lr: 0.02000, eta: 3 days, 0:43:58, time: 0.377, data_time: 0.004, memory: 3791, loss_rpn_cls: 3512799281492788139524096.0000, loss_rpn_bbox: 1518530066902682387349504.0000, loss_cls: 435772218125044191227543552.0000, acc: 94.8496, loss_bbox: 40495116691692944713842688.0000, loss: 481298668451964109665075200.0000
2019-07-30 10:13:09,015 - INFO - Epoch [1][1700/58633] lr: 0.02000, eta: 3 days, 0:42:42, time: 0.370, data_time: 0.004, memory: 3791, loss_rpn_cls: 3284510314701118226038784.0000, loss_rpn_bbox: 1162567653717180499886080.0000, loss_cls: 405972334976007277457178624.0000, acc: 94.9414, loss_bbox: 44356791104946548898791424.0000, loss: 454776203957101249268023296.0000
2019-07-30 10:13:27,367 - INFO - Epoch [1][1750/58633] lr: 0.02000, eta: 3 days, 0:40:25, time: 0.367, data_time: 0.003, memory: 3791, loss_rpn_cls: 3066270079157628303310848.0000, loss_rpn_bbox: 887112520764302662041600.0000, loss_cls: 347684722754085661123280896.0000, acc: 94.7969, loss_bbox: 37238435013324089461833728.0000, loss: 388876538665704419208724480.0000
2019-07-30 10:13:46,028 - INFO - Epoch [1][1800/58633] lr: 0.02000, eta: 3 days, 0:40:15, time: 0.373, data_time: 0.004, memory: 3791, loss_rpn_cls: 2904379300085843231768576.0000, loss_rpn_bbox: 1112800091037589653422080.0000, loss_cls: 320129707916297712938516480.0000, acc: 95.2461, loss_bbox: 34943331210680193794441216.0000, loss: 359090218761948872486944768.0000
2019-07-30 10:14:05,340 - INFO - Epoch [1][1850/58633] lr: 0.02000, eta: 3 days, 0:44:12, time: 0.386, data_time: 0.004, memory: 3791, loss_rpn_cls: 2566878010625097048522752.0000, loss_rpn_bbox: 981360457758289661263872.0000, loss_cls: 371481038657838346076684288.0000, acc: 94.1621, loss_bbox: 37869240806814503221067776.0000, loss: 412898520449593731773890560.0000
2019-07-30 10:14:24,521 - INFO - Epoch [1][1900/58633] lr: 0.02000, eta: 3 days, 0:47:06, time: 0.384, data_time: 0.004, memory: 3791, loss_rpn_cls: 2506677724270411290509312.0000, loss_rpn_bbox: 810762719964234931765248.0000, loss_cls: 297558388428070848821198848.0000, acc: 94.8594, loss_bbox: 29505186815108458238443520.0000, loss: 330381013052977505187659776.0000
2019-07-30 10:14:44,188 - INFO - Epoch [1][1950/58633] lr: 0.02000, eta: 3 days, 0:52:46, time: 0.393, data_time: 0.004, memory: 3791, loss_rpn_cls: 2327605172188252492267520.0000, loss_rpn_bbox: 944301412305724663398400.0000, loss_cls: 263073636518943062465970176.0000, acc: 94.9668, loss_bbox: 32365094862387531321704448.0000, loss: 298710635381363799664623616.0000
2019-07-30 10:15:03,766 - INFO - Epoch [1][2000/58633] lr: 0.02000, eta: 3 days, 0:57:36, time: 0.392, data_time: 0.004, memory: 3791, loss_rpn_cls: 2120199917124528168239104.0000, loss_rpn_bbox: 569833194926640730210304.0000, loss_cls: 315955675236003999192711168.0000, acc: 94.1309, loss_bbox: 37569526119027021277298688.0000, loss: 356215231348066288970760192.0000
2019-07-30 10:15:24,328 - INFO - Epoch [1][2050/58633] lr: 0.02000, eta: 3 days, 1:07:49, time: 0.411, data_time: 0.004, memory: 3791, loss_rpn_cls: 2019840936335403697307648.0000, loss_rpn_bbox: 746494062373447116259328.0000, loss_cls: 211094436197562531918643200.0000, acc: 94.5684, loss_bbox: 20937678238341660638445568.0000, loss: 234798447591566279381614592.0000
Issue Analytics
- State:
- Created 4 years ago
- Comments:5 (4 by maintainers)
Top Results From Across the Web
What happens if optimal training loss is too high - Stack Overflow
Regarding your first question - it is not necessarily a problem that your training loss is high, since there is no threshold for...
Read more >Extremely large spike in training loss that destroys training ...
Inspecting the prediction results after the spike showed that the training progress is basically destroyed and started over, with worse accuracy ...
Read more >Your validation loss is lower than your training loss? This is why!
Symptoms: validation loss is consistently lower than the training loss, the gap between them remains more or less the same size and training...
Read more >the training loss is too big and never changed #124 - GitHub
However, the loss become too big ( batch size is 2, the loss is 1572846, learning rate is 1e-4) , and it changed...
Read more >Training loss not decrease after certain epochs - Kaggle
Is the network size is too small / large? Check overfitting or underfitting by train history, then chose the best epoch size. Try...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Please read GETTING_STARTED.md.
Thank you very much. Forgive my folly.