question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Testing mIoU on PASCAL-Context got nan.

See original GitHub issue

Hi,

I use the below data config.

dataset_type = 'PascalContextDataset'
data_root = '/home/ubuntu/dataset/PASCAL_Context/VOCdevkit/VOC2010/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (520, 520)
crop_size = (480, 480)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale,
        img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
        flip=True,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=1,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='JPEGImages',
        ann_dir='SegmentationClass',
        split='ImageSets/Segmentation/train.txt',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='JPEGImages',
        ann_dir='SegmentationClass',
        split='ImageSets/Segmentation/val.txt',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='JPEGImages',
        ann_dir='SegmentationClass',
        split='ImageSets/Segmentation/val.txt',
        pipeline=test_pipeline))

The testing result is quite strange.

Class                  IoU        Acc
background           93.85      98.49
aeroplane            88.95      91.85
bicycle              63.43      81.58
bird                 88.93      92.60
boat                 69.97      72.82
bottle               75.46      89.79
bus                  84.96      87.64
car                  82.18      84.16
cat                  86.61      94.48
chair                24.36      30.57
cow                  87.53      93.38
table                46.55      50.18
dog                  80.99      90.12
horse                82.93      85.69
motorbike            82.89      91.69
person               83.98      91.55
pottedplant          51.72      57.72
sheep                81.93      83.15
sofa                 40.73      47.11
train                80.45      81.60
tvmonitor            66.43      72.46
bag                    nan        nan
bed                    nan        nan
bench                  nan        nan
book                   nan        nan
building               nan        nan
cabinet                nan        nan
ceiling                nan        nan
cloth                  nan        nan
computer               nan        nan
cup                    nan        nan
door                   nan        nan
fence                  nan        nan
floor                  nan        nan
flower                 nan        nan
food                   nan        nan
grass                  nan        nan
ground                 nan        nan
keyboard               nan        nan
light                  nan        nan
mountain               nan        nan
mouse                  nan        nan
curtain                nan        nan
platform               nan        nan
sign                   nan        nan
plate                  nan        nan
road                   nan        nan
rock                   nan        nan
shelves                nan        nan
sidewalk               nan        nan
sky                    nan        nan
snow                   nan        nan
bedclothes             nan        nan
track                  nan        nan
tree                   nan        nan
truck                  nan        nan
wall                   nan        nan
water                  nan        nan
window                 nan        nan
wood                   nan        nan
Summary:
Scope                 mIoU       mAcc       aAcc
global               73.56      79.46      94.18

Could you help me figure it out? Many thanks!

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:5

github_iconTop GitHub Comments

1reaction
yamengxicommented, Nov 19, 2020

I guess you used the wrong parameter num_classes, please check if your network parameters are correct. image

0reactions
ke-devcommented, May 26, 2022

hi, @fangruizhu ,I have the same problem, has your problem been solved?

Read more comments on GitHub >

github_iconTop Results From Across the Web

mmseg.apis — MMSegmentation 0.29.1 documentation
This method tests model with multiple gpus and collects the results under two ... In segmentation map annotation for PascalContext, 0 stands for...
Read more >
Supplementary to GroupViT: Semantic Segmentation ...
PASCAL Context dataset annotates not only object classes from PASCAL VOC 2012, e.g. car and dog, ... We find that the mIoU of...
Read more >
Deep High-Resolution Representation Learning for ... - arXiv
state-of-the-art results on PASCAL-Context, Cityscapes, and ... gets detection performance improvement and in particular ... SS-NAN [183]. ResNet-101.
Read more >
PASCAL Context Dataset - Papers With Code
The PASCAL Context dataset is an extension of the PASCAL VOC 2010 detection challenge, and it contains pixel-wise labels for all training images....
Read more >
Deep High-Resolution Representation Learning for Visual ...
state-of-the-art results on PASCAL-Context, Cityscapes, and ... gets detection performance improvement and in particular ... SS-NAN [146]. ResNet-101.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found