question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

TypeError: forward_train() missing 4 required positional arguments: 'ref_img', 'ref_img_metas', 'ref_gt_bboxes', and 'ref_gt_labels'

See original GitHub issue

Hello, I want to train the masktrack_rcnn with the coco dataset. So i had reset the dataset of masktrack_rcnn_r50_fpn_12e_youtubevis2019.py------'../../_base_/datasets/coco_instance.py' and the num_classes=6. image

By the way, i had reset the /home/music/Downloads/mmtracking-master/mmtrack/datasets/coco_video_dataset.py-------CLASSES = ('aircraft', 'buildings', 'electrical', 'person', 'tree', 'wire') and the load_as_video=False image

And my env:

------------------------------------------------------------
sys.platform: linux
Python: 3.8.15 (default, Nov 24 2022, 15:19:38) [GCC 11.2.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3090 Ti
CUDA_HOME: None
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.12.1
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.3.2  (built against CUDA 11.5)
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

TorchVision: 0.13.1
OpenCV: 4.6.0
MMCV: 1.7.0
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.3
MMTracking: 0.14.0+

This my config:

2022-12-16 10:09:31,585 - mmtrack - INFO - Distributed training: False
2022-12-16 10:09:32,054 - mmtrack - INFO - Config:
model = dict(
    detector=dict(
        type='MaskRCNN',
        backbone=dict(
            type='ResNet',
            depth=50,
            num_stages=4,
            out_indices=(0, 1, 2, 3),
            frozen_stages=1,
            norm_cfg=dict(type='BN', requires_grad=True),
            norm_eval=True,
            style='pytorch',
            init_cfg=dict(
                type='Pretrained', checkpoint='torchvision://resnet50')),
        neck=dict(
            type='FPN',
            in_channels=[256, 512, 1024, 2048],
            out_channels=256,
            num_outs=5),
        rpn_head=dict(
            type='RPNHead',
            in_channels=256,
            feat_channels=256,
            anchor_generator=dict(
                type='AnchorGenerator',
                scales=[8],
                ratios=[0.5, 1.0, 2.0],
                strides=[4, 8, 16, 32, 64]),
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0.0, 0.0, 0.0, 0.0],
                target_stds=[1.0, 1.0, 1.0, 1.0]),
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
            loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
        roi_head=dict(
            type='StandardRoIHead',
            bbox_roi_extractor=dict(
                type='SingleRoIExtractor',
                roi_layer=dict(
                    type='RoIAlign', output_size=7, sampling_ratio=0),
                out_channels=256,
                featmap_strides=[4, 8, 16, 32]),
            bbox_head=dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=6,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0.0, 0.0, 0.0, 0.0],
                    target_stds=[0.1, 0.1, 0.2, 0.2]),
                reg_class_agnostic=False,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
            mask_roi_extractor=dict(
                type='SingleRoIExtractor',
                roi_layer=dict(
                    type='RoIAlign', output_size=14, sampling_ratio=0),
                out_channels=256,
                featmap_strides=[4, 8, 16, 32]),
            mask_head=dict(
                type='FCNMaskHead',
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=6,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
        train_cfg=dict(
            rpn=dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.7,
                    neg_iou_thr=0.3,
                    min_pos_iou=0.3,
                    match_low_quality=True,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=64,
                    pos_fraction=0.5,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=False),
                allowed_border=-1,
                pos_weight=-1,
                debug=False),
            rpn_proposal=dict(
                nms_pre=200,
                max_per_img=200,
                nms=dict(type='nms', iou_threshold=0.7),
                min_bbox_size=0),
            rcnn=dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.5,
                    min_pos_iou=0.5,
                    match_low_quality=True,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=128,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False)),
        test_cfg=dict(
            rpn=dict(
                nms_pre=200,
                max_per_img=200,
                nms=dict(type='nms', iou_threshold=0.7),
                min_bbox_size=0),
            rcnn=dict(
                score_thr=0.01,
                nms=dict(type='nms', iou_threshold=0.5),
                max_per_img=100,
                mask_thr_binary=0.5)),
        init_cfg=dict(
            type='Pretrained',
            checkpoint=
            'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth'
        )),
    type='MaskTrackRCNN',
    track_head=dict(
        type='RoITrackHead',
        roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        embed_head=dict(
            type='RoIEmbedHead',
            num_fcs=2,
            roi_feat_size=7,
            in_channels=256,
            fc_out_channels=1024),
        train_cfg=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                match_low_quality=True,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=128,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            pos_weight=-1,
            debug=False)),
    tracker=dict(
        type='MaskTrackRCNNTracker',
        match_weights=dict(det_score=1.0, iou=2.0, det_label=10.0),
        num_frames_retain=20))
dataset_type = 'CocoDataset'
data_root = '/home/music/Downloads/mmtracking-master/data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=6,
    workers_per_gpu=2,
    train=dict(
        type='CocoDataset',
        ann_file=
        '/home/music/Downloads/mmtracking-master/data/coco/annotations/train.json',
        img_prefix=
        '/home/music/Downloads/mmtracking-master/data/coco/train2023/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(
                type='Collect',
                keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
        ]),
    val=dict(
        type='CocoDataset',
        ann_file=
        '/home/music/Downloads/mmtracking-master/data/coco/annotations/val.json',
        img_prefix='/home/music/Downloads/mmtracking-master/data/coco/val2023/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='CocoDataset',
        ann_file=
        '/home/music/Downloads/mmtracking-master/data/coco/annotations/val.json',
        img_prefix='/home/music/Downloads/mmtracking-master/data/coco/val2023/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
evaluation = dict(metric=['bbox', 'segm'], classwise=True)
optimizer = dict(type='SGD', lr=0.00125, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.3333333333333333,
    step=[8, 11])
total_epochs = 12
work_dir = 'work_dir/masktrack_coco'
gpu_ids = [0]

Best wish! Thank you!

Issue Analytics

  • State:open
  • Created 9 months ago
  • Comments:7

github_iconTop GitHub Comments

1reaction
lijoe123commented, Dec 19, 2022

It’s OK. Thank you so much!

0reactions
dyhBUPTcommented, Dec 19, 2022

I’m sorry but I haven’t tried to use coco to train VIS model. Maybe you can refer to the CocoVideoDataset.

Best wishes.

Read more comments on GitHub >

github_iconTop Results From Across the Web

python - __init__() missing 4 required positional arguments
I have created this code but i keep getting the error: TypeError: init() missing 4 required positional arguments: ...
Read more >
TypeError: forward() missing 4 required positional arguments ...
Hello. I tried tutorial of bbbc010-2012 Jupyter notebooks, but this error happend and I don't know solution. Could you tell me what I...
Read more >
How to make a function - Python Morsels
Functions have inputs (arguments) and an optional output (the return value) ... in <module> TypeError: greet() missing 1 required positional argument: 'name ...
Read more >
Feeding PipelineData to HyperDriveStep results in: TypeError ...
Feeding PipelineData to HyperDriveStep results in: TypeError: __new__() missing 2 required positional arguments: 'workspace' and 'name'.
Read more >
Cell Profiler Analyst - TypeError: read_bytes() missing 3 ...
Hi, I am trying to use CellProfiler Analyst 3.0.4 to classify some ... TypeError: read_bytes() missing 3 required positional arguments: ...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found