BUG: column labels converted to string in merge
See original GitHub issuePandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
class Column:
def __init__(self, name):
self.name = name
col = Column(name='col')
df1 = pd.DataFrame({col: [1], 'X': [2]})
df2 = pd.DataFrame({col: [1], 'Y': [3]})
merged = pd.merge(left=df1, right=df2, left_index=True, right_index=True)
assert not isinstance(merged.columns.tolist()[0], str)
Issue Description
merged
dataframe columns converted to string (because the suffix was added to the equal column)
> merged.columns.tolist()
['<__main__.Column object at 0x7f41edd52d50>_x',
'X',
'<__main__.Column object at 0x7f41edd52d50>_y',
'Y']
Expected Behavior
I would expect merge
to keep the column of type __main__.Column
and not covert it to string
Regards the duplication, IMO its ok to have 2 identical columns and let the user decide how to handle it by his own
Installed Versions
INSTALLED VERSIONS
commit : 4bfe3d07b4858144c219b9346329027024102ab6 python : 3.8.7.final.0 python-bits : 64 OS : Darwin OS-release : 20.2.0 Version : Darwin Kernel Version 20.2.0: Wed Dec 2 20:39:59 PST 2020; root:xnu-7195.60.75~1/RELEASE_X86_64 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : None LOCALE : None.UTF-8
pandas : 1.4.2 numpy : 1.22.3 pytz : 2022.1 dateutil : 2.8.2 pip : 20.2.3 setuptools : 49.2.1 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None brotli : None fastparquet : None fsspec : None gcsfs : None markupsafe : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None pyxlsb : None s3fs : None scipy : None snappy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None zstandard : None
Issue Analytics
- State:
- Created a year ago
- Comments:6 (5 by maintainers)
Top GitHub Comments
@simonjayhawkins
I do not think this is correct. Index labels and column labels are not the same. Duplicate index labels occur often in frames that I work with, yet I never allow duplicate column labels because they are almost impossible to work with. I am not able to use this setting because it forbids both duplicate index and column labels, and I don’t think my usage/experience is niche.
needs discussion for this scenario, comment was more holistic.
going forward, it should not need to be a decision (or personal preference) on whether a method returns duplicates. duplicate column labels are a documented pandas feature https://pandas.pydata.org/pandas-docs/stable/user_guide/duplicates.html#duplicate-labels and therefore all methods should support them, work correctly with them and correctly propagate them.
and since pandas 1.2, https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2.0.html#optionally-disallow-duplicate-labels the mechanism for disallowing duplicate column labels now means that allowing/disallowing duplicate column labels should not need to be incorporated into the api design of individual methods.
sure. users not wanting duplicate column labels are accommodated and will be able to use
.set_flags(allows_duplicate_labels=False)
going forward.