BUG: groupby.transform with execution engine numba does not work in multiindex case since 1.3
See original GitHub issuePandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame([{'A': 1, 'B': 2, 'C': 3}]).set_index(["A", "B"])
def numba_func(values, index):
return 1
res = df.groupby('A').transform(
numba_func, engine="numba"
)
Issue Description
Traceback (most recent call last): File “/home/ninja/workspace/lumen_psf/python/psf/script/dev_tst.py”, line 11, in <module> res = df.groupby(‘A’).transform( File “/home/ninja/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/pandas/core/groupby/generic.py”, line 1357, in transform return self._transform( File “/home/ninja/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/pandas/core/groupby/groupby.py”, line 1430, in _transform result = self._transform_with_numba( File “/home/ninja/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/pandas/core/groupby/groupby.py”, line 1187, in _transform_with_numba result = numba_transform_func( File “/home/ninja/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/numba/core/dispatcher.py”, line 468, in compile_for_args error_rewrite(e, ‘typing’) File “/home/ninja/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/numba/core/dispatcher.py”, line 409, in error_rewrite raise e.with_traceback(None) numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend) non-precise type array(pyobject, 1d, C) During: typing of argument at /home/ninja/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/pandas/core/groupby/numba.py (167)
File “…/…/…/…/…/miniconda3/envs/py39pandas13/lib/python3.9/site-packages/pandas/core/groupby/numba_.py”, line 167: def group_transform( <source elided> ) -> np.ndarray: result = np.empty((len(values), num_columns)) ^
Expected Behavior
Up to pandas version 1.2 this worked like a charm. Apparently the redesign of the grouping did not respect to multi-index cases when using calculation engine numba.
Installed Versions
INSTALLED VERSIONS
commit : 66e3805b8cabe977f40c05259cc3fcf7ead5687d python : 3.9.12.final.0 python-bits : 64 OS : Linux OS-release : 5.13.0-40-generic Version : #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8
pandas : 1.3.5 numpy : 1.21.6 pytz : 2022.1 dateutil : 2.8.2 pip : 22.0.4 setuptools : 59.8.0 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None fsspec : None fastparquet : None gcsfs : None matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None numba : 0.55.1
Issue Analytics
- State:
- Created a year ago
- Comments:5 (3 by maintainers)
Top GitHub Comments
No problem. I opened up https://github.com/pandas-dev/pandas/issues/48447 to track numba support with pandas nullable types
The numba functionality has not been adapted to work with pandas
ExtensionTypes
yet, but a pull request would be most welcome!pandas nullable types are still relatively new (since 1.0), and a lot of effort has been made to extend it’s compatibility throughout the large API. Please be mindful of the tone as pandas development is still largely supported by volunteer contributions.