BUG: "IndexingError: Too many indexers" when accessing a None value using .loc through a MultiIndex
See original GitHub issueSteps to reproduce
print(pd.Series(
[None],
pd.MultiIndex.from_arrays([['Level1'], ['Level2']]))
.loc[('Level1', 'Level2')])
Expected output
None
Actual output
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in __getitem__(self, key)
1760 except (KeyError, IndexError, AttributeError):
1761 pass
-> 1762 return self._getitem_tuple(key)
1763 else:
1764 # we by definition only have the 0th axis
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in _getitem_tuple(self, tup)
1275
1276 # no multi-index, so validate all of the indexers
-> 1277 self._has_valid_tuple(tup)
1278
1279 # ugly hack for GH #836
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in _has_valid_tuple(self, key)
699 for i, k in enumerate(key):
700 if i >= self.ndim:
--> 701 raise IndexingError("Too many indexers")
702 try:
703 self._validate_key(k, i)
IndexingError: Too many indexers
Additional information
If any value other than None
(even np.nan
) is used, the code behaves correctly.
If a single index level is used, the code behaves correctly.
Workaround
Seems to work if .loc(axis=0)[('Level1', 'Level2')]
is used instead.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None python : 3.8.3.candidate.1 python-bits : 64 OS : Linux OS-release : 5.6.0-1-amd64 machine : x86_64 processor : byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8
pandas : 1.0.3 numpy : 1.18.2 pytz : 2019.3 dateutil : 2.8.1 pip : 20.0.2 setuptools : 46.1.3 Cython : None pytest : 4.6.9 hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.5.0 html5lib : None pymysql : None psycopg2 : None jinja2 : 2.11.1 IPython : 7.13.0 pandas_datareader: None bs4 : None bottleneck : None fastparquet : None gcsfs : None lxml.etree : 4.5.0 matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pytables : None pytest : 4.6.9 pyxlsb : None s3fs : None scipy : 1.4.1 sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None xlsxwriter : None numba : None
Issue Analytics
- State:
- Created 3 years ago
- Comments:7 (7 by maintainers)
Top GitHub Comments
The problem, I think, is that
False
in principle can also be a valid result (so similar problem as withNone
).So I think we need another way: either by raising an error and catching that in the layer above, or either with a custom object like
no_result = object()
and thenif result != no_result: return result
@pedrooa Sure, that would be very welcome!