BUG: Same function calls on the same DataFrameGroupBy object give different results
See original GitHub issue-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Source codes
import pandas as pd
inp = pd.DataFrame([[1, 2, 3, 4],
[5, 6, 7, 8],
[1, 10, 11, 12],
[5, 14, 15, 16],
[1, 18, 19, 20],
[21, 22, 23, 24],
[5, 26, 27, 28]],
columns=['group', 'fa', 'fb', 'fc'])
print('pandas version:', pd.__version__)
grps = inp.groupby('group', as_index=True)
print('Column number in all groups:',
grps.apply(lambda x: x.shape[1]).unique())
print('Column number in all groups:',
grps.apply(lambda x: x.shape[1]).unique())
print('ID:', id(grps))
print('Shape of first dataframe in the group:', grps.first().shape)
print('ID:', id(grps))
print('Column number in all groups:',
grps.apply(lambda x: x.shape[1]).unique())
Problem description
In above codes, same function calls grps.apply(lambda x: x.shape[1]).unique()
give different results:
In the first 2 times before grps.first().shape
is called, it returns 4.
While after grps.first().shape
is called, it returns 3.
Running output
Column number in all groups: [4]
Column number in all groups: [4]
ID: 140686222651664
Shape of first dataframe in the group: (3, 3)
ID: 140686222651664
Column number in all groups: [3]
Expected Output
Column number in all groups: [4]
Column number in all groups: [4]
ID: 140686222651664
Shape of first dataframe in the group: (3, 3)
ID: 140686222651664
Column number in all groups: [4]
Environments
Python 3.7.7, Ubuntu 18.04.
Output of pd.show_versions()
:
INSTALLED VERSIONS
------------------
commit : None
python : 3.7.7.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-96-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.2
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.1
setuptools : 41.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
Issue Analytics
- State:
- Created 3 years ago
- Reactions:2
- Comments:5 (1 by maintainers)
Top Results From Across the Web
Pandas: Aggregate of DataFrameGroupby - Stack Overflow
This has the upside that you need only one function call. Use this, if you want the same operations to be calculated with...
Read more >Group by: split-apply-combine — pandas 1.5.2 documentation
If the results from different groups have different dtypes, then a common dtype will be determined in the same way as DataFrame construction....
Read more >Pandas' groupby explained in detail | by Fabian Bosler
Learn how to master all Pandas' groupby functionalities, like agg(regation), transform and filter — code-along guide plenty of examples.
Read more >Group and Aggregate your Data Better using Pandas Groupby
Python tuples are used to provide the column name on which to work on, along with the function to apply. For example: data[data['item']...
Read more >pandas GroupBy: Your Guide to Grouping Data in Python
groupby() is smart and can handle a lot of different input types. Any of these would produce the same result because all of...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
The error occurs in the reset_cache call at : https://github.com/pandas-dev/pandas/blob/a087f3e5858eb7213d27da30f3d832298a42eb2f/pandas/core/groupby/groupby.py#L675
which is a call to: https://github.com/pandas-dev/pandas/blob/a087f3e5858eb7213d27da30f3d832298a42eb2f/pandas/core/base.py#L67
This seems to be too advanced for me to work on.
Confirmed on Ubuntu 18.04, Python 3.8.2, Pandas 1.0.3.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
The issue lies in function “first()”. It works inplace and modifies the GroubBy object removing the “group” column. Same happens with the function “nth”.
I can take this if this is a bug and not by design.