BUG: uint16 inserted as int16 when assigning row with dict
See original GitHub issuePandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
df = pd.DataFrame(columns=["actual", "reference"])
df.loc[0] = {'actual': np.uint16(40_000), 'reference': "nope"}
df
# actual reference
# 0 -25536 nope
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1 entries, 0 to 0
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 actual 1 non-null int16
1 reference 1 non-null object
dtypes: int16(1), object(1)
Issue Description
Inserting a row with a dict, uint16 values are converted to int16 and the value conversion does not preserve the correct value. This also happens when assigning into an existing object-typed column (the conversion sequence seems to be -> int16 -> int in that case).
Expected Behavior
It’s expected the dtype is preserved - uint16 if possible, or an int which is large enough to represent the value.
Installed Versions
python : 3.8.10.final.0
python-bits : 64
OS : Linux
machine : x86_64
pandas : 1.4.2
numpy : 1.22.4
pytz : 2022.1
dateutil : 2.8.2
pip : 20.0.2
setuptools : 44.0.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : 2.1.1
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
Issue Analytics
- State:
- Created a year ago
- Comments:8 (8 by maintainers)
Top Results From Across the Web
Pandas DataFrame Assignment Bug using Dictionaries of ...
Problem. Pandas seems to support using df.loc to assign a dictionary to a row entry, ...
Read more >IO tools (text, CSV, HDF5, …) — pandas 1.5.2 documentation
Column(s) to use as the row labels of the DataFrame , either given as string name or column ... Dict of functions for...
Read more >Overview of Pandas Data Types - Practical Business Python
int64, int, int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64 ... After looking at the automatically assigned data types, ...
Read more >astropy.io.fits History — Astropy v0.2.dev2728
FITS HDUs contain an entire FITS file embedded in their data section. ... Fixed a bug where writing a table with zero rows...
Read more >Data Types and In-Memory Data Model - Apache Arrow
In [27]: pa.array([1, 2], type=pa.uint16()) Out[27]: <pyarrow.lib. ... Arrow data is immutable, so values can be selected but not assigned.
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
first bad commit: [549e39bf7a4f925424b39e613895594f48dbb1a5] ENH: Make maybe_convert_object respect dtype itemsize (#40908) cc @rhshadrach
I suspect as result of https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.4.0.html#ignoring-dtypes-in-concat-with-empty-or-all-na-columns and that addressing the above regression resolves the dtype issue
Thanks @bluss for the report
note working in pandas-1.2.5, albeit retaining object dtype from empty DataFrame and then in pandas-1.3.5 overflow but still with object dtype and then in pandas-1.4.2/main overflow but changed (incorrect) dtype.