question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Tracking issue for the 1.3.1 release.

https://github.com/pandas-dev/pandas/milestone/87

Currently scheduled for July 25, 2021 (date flexible on severity of regressions)

List of open regressions: https://github.com/pandas-dev/pandas/issues?q=is%3Aopen+is%3Aissue+label%3ARegression

significant performance regressions between 1.2.5 and 1.3.0

       before           after         ratio
     [7c48ff44]       [f00ed8f4]
     <v1.2.5^0>       <v1.3.0^0>
+     2.43±0.03ms         28.4±1ms    11.66  indexing.InsertColumns.time_assign_list_like_with_setitem
+     5.79±0.08ms       29.9±0.4ms     5.17  frame_methods.MaskBool.time_frame_mask_bools
+      88.7±0.9μs          453±5μs     5.11  inference.ToTimedelta.time_convert_int
+        82.6±2ms          386±1ms     4.67  frame_ctor.FromDicts.time_nested_dict_int64
+        363±10μs      1.26±0.01ms     3.48  stat_ops.FrameOps.time_op('prod', 'int', 1)
+         537±7μs      1.84±0.01ms     3.43  stat_ops.FrameOps.time_op('mean', 'int', 1)
+         341±3μs      1.09±0.01ms     3.21  stat_ops.FrameOps.time_op('sum', 'int', 1)
+        643±10μs      1.95±0.01ms     3.03  rolling.EWMMethods.time_ewm('Series', 1000, 'float', 'mean')
+         626±6μs      1.88±0.03ms     3.00  rolling.EWMMethods.time_ewm('Series', 10, 'float', 'mean')
+         678±9μs      2.00±0.04ms     2.95  rolling.EWMMethods.time_ewm('Series', 10, 'int', 'mean')
+        696±10μs      2.01±0.01ms     2.89  rolling.EWMMethods.time_ewm('Series', 1000, 'int', 'mean')
+         592±9μs      1.68±0.01ms     2.84  stat_ops.FrameOps.time_op('mean', 'int', 0)
+        758±10μs      2.11±0.02ms     2.79  rolling.EWMMethods.time_ewm('DataFrame', 10, 'float', 'mean')
+     1.34±0.01ms       3.73±0.1ms     2.78  stat_ops.FrameOps.time_op('std', 'int', 0)
+        804±10μs      2.21±0.03ms     2.75  rolling.EWMMethods.time_ewm('DataFrame', 10, 'int', 'mean')
+         479±4μs      1.32±0.04ms     2.75  stat_ops.FrameOps.time_op('sum', 'int', 0)
+         213±4ns          583±8ns     2.74  tslibs.timestamp.TimestampProperties.time_freqstr(None, 'B')
+         218±2ns          592±4ns     2.72  tslibs.timestamp.TimestampProperties.time_freqstr(<DstTzInfo 'US/Pacific' LMT-1 day, 16:07:00 STD>, 'B')
+     1.32±0.03ms      3.58±0.04ms     2.70  stat_ops.FrameOps.time_op('var', 'int', 0)
+         221±2ns          595±9ns     2.69  tslibs.timestamp.TimestampProperties.time_freqstr(tzlocal(), 'B')
+         216±2ns          582±6ns     2.69  tslibs.timestamp.TimestampProperties.time_freqstr(datetime.timezone(datetime.timedelta(seconds=3600)), 'B')
+         212±4ns         567±10ns     2.68  tslibs.timestamp.TimestampProperties.time_freqstr(tzfile('/usr/share/zoneinfo/Asia/Tokyo'), 'B')

cc @pandas-dev/pandas-core @pandas-dev/pandas-triage

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:16 (16 by maintainers)

github_iconTop GitHub Comments

2reactions
simonjayhawkinscommented, Jul 2, 2021
-      83.3±0.3ms      4.42±0.08ms     0.05  frame_methods.Fillna.time_frame_fillna(False, 'pad', 'Float64')
-        97.6±2ms       4.81±0.1ms     0.05  frame_methods.Fillna.time_frame_fillna(False, 'bfill', 'Int64')
-      95.3±0.3ms      4.43±0.07ms     0.05  frame_methods.Fillna.time_frame_fillna(True, 'pad', 'Int64')
-        97.0±1ms      4.48±0.09ms     0.05  frame_methods.Fillna.time_frame_fillna(False, 'pad', 'Int64')
-      27.7±0.2ms      1.27±0.01ms     0.05  rolling.GroupbyEWM.time_groupby_method('std')
-     17.9±0.09ms         786±10μs     0.04  arithmetic.Ops2.time_frame_float_div_by_zero
-         189±2ms      4.88±0.03ms     0.03  indexing.NumericSeriesIndexing.time_getitem_lists(<class 'pandas.core.indexes.numeric.Float64Index'>, 'unique_monotonic_inc')
-      62.8±0.3ms      1.05±0.01ms     0.02  reshape.ReshapeExtensionDtype.time_unstack_fast('datetime64[ns, US/Pacific]')
-     2.27±0.03ms       37.2±0.8μs     0.02  categoricals.Concat.time_append_overlapping_index
-       228±0.5ms      3.45±0.03ms     0.02  rolling.GroupbyEWM.time_groupby_method('corr')
-         224±2ms      3.26±0.02ms     0.01  rolling.GroupbyEWM.time_groupby_method('cov')
-         189±2ms      2.43±0.01ms     0.01  indexing.NumericSeriesIndexing.time_getitem_array(<class 'pandas.core.indexes.numeric.Float64Index'>, 'unique_monotonic_inc')
-         189±2ms      2.30±0.01ms     0.01  indexing.NumericSeriesIndexing.time_loc_array(<class 'pandas.core.indexes.numeric.Float64Index'>, 'unique_monotonic_inc')
-      50.6±0.3μs         600±50ns     0.01  index_cached_properties.IndexCache.time_shape('RangeIndex')
-        51.4±2μs         600±50ns     0.01  index_cached_properties.IndexCache.time_shape('Int64Index')
-      69.6±0.6ms          455±6μs     0.01  indexing.DatetimeIndexIndexing.time_get_indexer_mismatched_tz
-      49.8±0.3ms          305±2μs     0.01  indexing.CategoricalIndexIndexing.time_get_indexer_list('monotonic_decr')
-      49.4±0.4ms          298±3μs     0.01  indexing.CategoricalIndexIndexing.time_get_indexer_list('monotonic_incr')
-         187±4ms      1.13±0.01ms     0.01  indexing.NumericSeriesIndexing.time_getitem_list_like(<class 'pandas.core.indexes.numeric.Float64Index'>, 'unique_monotonic_inc')
-      49.6±0.3ms          290±2μs     0.01  indexing.CategoricalIndexIndexing.time_get_indexer_list('non_monotonic')
-         188±2ms         1.01±0ms     0.01  indexing.NumericSeriesIndexing.time_loc_list_like(<class 'pandas.core.indexes.numeric.Float64Index'>, 'unique_monotonic_inc')
-         634±6μs      2.16±0.02μs     0.00  inference.ToNumericDowncast.time_downcast('datetime64', None)
-      55.1±0.1ms          155±2μs     0.00  reshape.ReshapeExtensionDtype.time_transpose('datetime64[ns, US/Pacific]')
-       205±0.4ms          223±4μs     0.00  hash_functions.UniqueForLargePyObjectInts.time_unique
-      3.02±0.1ms      1.08±0.02μs     0.00  categoricals.Indexing.time_unique
2reactions
jbrockmendelcommented, Jul 2, 2021

for morale purposes, any perf improvements?

Read more comments on GitHub >

github_iconTop Results From Across the Web

The Transport Layer Security (TLS) Protocol Version 1.3
1. Handshake The TLS handshake is an Authenticated Key Exchange (AKE) protocol which is intended to provide both one-way authenticated (server-only) and ...
Read more >
Key differences Between TLS 1.2 and TLS 1.3 | Glossary
The differences between TLS 1.2 and TLS 1.3 are extensive and significant, offering improvements in both performance and security.
Read more >
Guide 12 Reference Level Software User's Guide - NYISO
The RLS Application includes features that support the requirements to submit cost-based data. This guide aids MPs in developing cost based ...
Read more >
RLS: 1.3.4 #43531 - pandas-dev/pandas - GitHub
Tracking issue for the 1.3.4 release. Currently scheduled for October 17, 2021. (could release earlier if there are issues with the pandas ...
Read more >
[ROM]-[MikRoms]-[8/16/11]Incredible Sensation RLS ... - XDA Forums
Just a quick question regarding RLS 1.3. I don't need VVM and I like the Sense 3.0 SMS/MMS app better, I have both...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found