"SpecificationError: nested dictionary is ambiguous in aggregation" in a certain case of groupby-aggregation
See original GitHub issueAll of these examples for using agg
work fine:
import pandas as pd
df = pd.DataFrame({"A":['A','A','B','B','B'],
"B":[1,2,1,1,2],
"C":[9,8,7,6,5]})
df.groupby('A')[['B','C']].agg({'B':'sum','C':'count'})
df.groupby('A')[['B','C']].agg({'B':['sum','count'],'C':'count'})
df.groupby('A')[['B']].agg('sum')
df.groupby('A')['B'].agg('sum')
This one throws a future warning as mentioned here:
df.groupby('A')['B'].agg({'B':['sum','count']})
This one works just fine:
df.groupby('A')[['B','C']].agg({'B':'sum'})
But this one throws an error (I’m aware this expression isn’t necessary):
df.groupby('A')[['B']].agg({'B':'sum'})
SpecificationError: nested dictionary is ambiguous in aggregation
Why does it throw this error?
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None python: 3.6.8.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 79 Stepping 1, GenuineIntel byteorder: little LC_ALL: None LANG: en LOCALE: None.None
pandas: 0.24.1 pytest: 3.9.1 pip: 19.0.1 setuptools: 40.8.0 Cython: 0.29.5 numpy: 1.15.4 scipy: 1.2.0 pyarrow: None xarray: None IPython: 7.2.0 sphinx: 1.8.4 patsy: 0.5.1 dateutil: 2.7.5 pytz: 2018.9 blosc: None bottleneck: 1.2.1 tables: 3.4.4 numexpr: 2.6.9 feather: None matplotlib: 3.0.2 openpyxl: 2.6.0 xlrd: 1.2.0 xlwt: 1.3.0 xlsxwriter: 1.1.2 lxml.etree: 4.3.1 bs4: 4.7.1 html5lib: 1.0.1 sqlalchemy: 1.2.18 pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: 0.2.1 pandas_gbq: None pandas_datareader: None gcsfs: None
Issue Analytics
- State:
- Created 5 years ago
- Reactions:1
- Comments:6 (5 by maintainers)
I can confirm in pandas 0.25.0.
These work fine:
But this raises an error:
And the
.agg()
call only requires a single column, but you provide more than one column when you select columns from thegroupby
, then you get a weird result. (Why does the result below include ay
column at all?)Take