question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

Installing JAX with gpu/tpu support using poetry

See original GitHub issue
  • I have searched the issues of this repo and believe that this is not a duplicate.
  • I have searched the documentation and believe that my question is not covered.

Issue

Hi everyone,

I am installing JAX using poetry. I run the command poetry add jax and it works fine but this installs the cpu version, as expected. To install the gpu/tpu version of JAX the documentation indicates that I have to run:

pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html pip install "jax[tpu]>=0.2.16" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html

I understand I could run this specific command in my environment, but if I do this, I believe, it is not handled well by poetry. Is there a more poetry way of installing JAX for gpu/tpu ?

Thank you for the help 😃

Issue Analytics

  • State:closed
  • Created a year ago
  • Comments:7 (4 by maintainers)

github_iconTop GitHub Comments

2reactions
pablo2909commented, Apr 29, 2022

here is the .toml file I have:

[tool.poetry]
name = "test"
version = "0.1.0"
description = ""
authors = 
readme = "README.md"

[tool.poetry.dependencies]
python = "^3.10"
jaxlib = {version = "^0.3.7+cuda11.cudnn82", source = "jax"}



[[tool.poetry.source]]
name = "jax"
url = "https://storage.googleapis.com/jax-releases/jax_releases.html"
default = false
secondary = false

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

and .lock

[[package]]
name = "absl-py"
version = "1.0.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
category = "main"
optional = false
python-versions = ">=3.6"

[package.dependencies]
six = "*"

[[package]]
name = "flatbuffers"
version = "2.0"
description = "The FlatBuffers serialization format for Python"
category = "main"
optional = false
python-versions = "*"

[[package]]
name = "jaxlib"
version = "0.3.7+cuda11.cudnn82"
description = "XLA library for JAX"
category = "main"
optional = false
python-versions = ">=3.7"

[package.dependencies]
absl-py = "*"
flatbuffers = ">=1.12,<3.0"
numpy = ">=1.19"
scipy = "*"

[package.source]
type = "legacy"
url = "https://storage.googleapis.com/jax-releases/jax_releases.html"
reference = "jax"

[[package]]
name = "numpy"
version = "1.22.3"
description = "NumPy is the fundamental package for array computing with Python."
category = "main"
optional = false
python-versions = ">=3.8"

[[package]]
name = "scipy"
version = "1.6.1"
description = "SciPy: Scientific Library for Python"
category = "main"
optional = false
python-versions = ">=3.7"

[package.dependencies]
numpy = ">=1.16.5"

[[package]]
name = "six"
version = "1.16.0"
description = "Python 2 and 3 compatibility utilities"
category = "main"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"

[metadata]
lock-version = "1.1"
python-versions = "^3.10"
content-hash = "9f10c226d6b941232791e19862e24808f4136300ba691a1f8505220b8c36ab57"

[metadata.files]
absl-py = [
    {file = "absl-py-1.0.0.tar.gz", hash = "sha256:ac511215c01ee9ae47b19716599e8ccfa746f2e18de72bdf641b79b22afa27ea"},
    {file = "absl_py-1.0.0-py3-none-any.whl", hash = "sha256:84e6dcdc69c947d0c13e5457d056bd43cade4c2393dce00d684aedea77ddc2a3"},
]
flatbuffers = [
    {file = "flatbuffers-2.0-py2.py3-none-any.whl", hash = "sha256:3751954f0604580d3219ae49a85fafec9d85eec599c0b96226e1bc0b48e57474"},
    {file = "flatbuffers-2.0.tar.gz", hash = "sha256:12158ab0272375eab8db2d663ae97370c33f152b27801fa6024e1d6105fd4dd2"},
]
jaxlib = [
    {file = "jaxlib-0.3.7+cuda11.cudnn82-cp310-none-manylinux2014_x86_64.whl", hash = "sha256:1d7e540071bad5a76a2ad8a2b6c0dd075adaabe4bab7fb6e116f04ff5425fe1b"},
    {file = "jaxlib-0.3.7+cuda11.cudnn82-cp37-none-manylinux2014_x86_64.whl", hash = "sha256:8ce56ccf18fd79c476910251875e7f0f73417d4ec4912b29b2066d9ff8d82997"},
    {file = "jaxlib-0.3.7+cuda11.cudnn82-cp38-none-manylinux2014_x86_64.whl", hash = "sha256:f6076884c5d1bbf55c2fb153454afb118beeedcd85189793217c82ecb234fc8c"},
    {file = "jaxlib-0.3.7+cuda11.cudnn82-cp39-none-manylinux2014_x86_64.whl", hash = "sha256:16a87c125f0075d62995b18eba449e962b45db010435e6f0a65ee701378fc75f"},
]
numpy = [
    {file = "numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75"},
    {file = "numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab"},
    {file = "numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e"},
    {file = "numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4"},
    {file = "numpy-1.22.3-cp310-cp310-win32.whl", hash = "sha256:f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430"},
    {file = "numpy-1.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4"},
    {file = "numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce"},
    {file = "numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe"},
    {file = "numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5"},
    {file = "numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1"},
    {file = "numpy-1.22.3-cp38-cp38-win32.whl", hash = "sha256:e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62"},
    {file = "numpy-1.22.3-cp38-cp38-win_amd64.whl", hash = "sha256:07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676"},
    {file = "numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123"},
    {file = "numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802"},
    {file = "numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d"},
    {file = "numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168"},
    {file = "numpy-1.22.3-cp39-cp39-win32.whl", hash = "sha256:fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa"},
    {file = "numpy-1.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a"},
    {file = "numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f"},
    {file = "numpy-1.22.3.zip", hash = "sha256:dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18"},
]
scipy = [
    {file = "scipy-1.6.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a15a1f3fc0abff33e792d6049161b7795909b40b97c6cc2934ed54384017ab76"},
    {file = "scipy-1.6.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:e79570979ccdc3d165456dd62041d9556fb9733b86b4b6d818af7a0afc15f092"},
    {file = "scipy-1.6.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a423533c55fec61456dedee7b6ee7dce0bb6bfa395424ea374d25afa262be261"},
    {file = "scipy-1.6.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:33d6b7df40d197bdd3049d64e8e680227151673465e5d85723b3b8f6b15a6ced"},
    {file = "scipy-1.6.1-cp37-cp37m-win32.whl", hash = "sha256:6725e3fbb47da428794f243864f2297462e9ee448297c93ed1dcbc44335feb78"},
    {file = "scipy-1.6.1-cp37-cp37m-win_amd64.whl", hash = "sha256:5fa9c6530b1661f1370bcd332a1e62ca7881785cc0f80c0d559b636567fab63c"},
    {file = "scipy-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bd50daf727f7c195e26f27467c85ce653d41df4358a25b32434a50d8870fc519"},
    {file = "scipy-1.6.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:f46dd15335e8a320b0fb4685f58b7471702234cba8bb3442b69a3e1dc329c345"},
    {file = "scipy-1.6.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0e5b0ccf63155d90da576edd2768b66fb276446c371b73841e3503be1d63fb5d"},
    {file = "scipy-1.6.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2481efbb3740977e3c831edfd0bd9867be26387cacf24eb5e366a6a374d3d00d"},
    {file = "scipy-1.6.1-cp38-cp38-win32.whl", hash = "sha256:68cb4c424112cd4be886b4d979c5497fba190714085f46b8ae67a5e4416c32b4"},
    {file = "scipy-1.6.1-cp38-cp38-win_amd64.whl", hash = "sha256:5f331eeed0297232d2e6eea51b54e8278ed8bb10b099f69c44e2558c090d06bf"},
    {file = "scipy-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0c8a51d33556bf70367452d4d601d1742c0e806cd0194785914daf19775f0e67"},
    {file = "scipy-1.6.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:83bf7c16245c15bc58ee76c5418e46ea1811edcc2e2b03041b804e46084ab627"},
    {file = "scipy-1.6.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:794e768cc5f779736593046c9714e0f3a5940bc6dcc1dba885ad64cbfb28e9f0"},
    {file = "scipy-1.6.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:5da5471aed911fe7e52b86bf9ea32fb55ae93e2f0fac66c32e58897cfb02fa07"},
    {file = "scipy-1.6.1-cp39-cp39-win32.whl", hash = "sha256:8e403a337749ed40af60e537cc4d4c03febddcc56cd26e774c9b1b600a70d3e4"},
    {file = "scipy-1.6.1-cp39-cp39-win_amd64.whl", hash = "sha256:a5193a098ae9f29af283dcf0041f762601faf2e595c0db1da929875b7570353f"},
    {file = "scipy-1.6.1.tar.gz", hash = "sha256:c4fceb864890b6168e79b0e714c585dbe2fd4222768ee90bc1aa0f8218691b11"},
]
six = [
    {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
    {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]

1reaction
pablo2909commented, Apr 29, 2022

Nice, thank you for your help. Looking forward for this feature to be merged !

Read more comments on GitHub >

github_iconTop Results From Across the Web

Building from source - JAX documentation
You can install the necessary Python dependencies using pip : pip install numpy wheel. To build jaxlib without CUDA GPU or TPU support...
Read more >
Jax — Numpy on GPUs and TPUs - Towards Data Science
This command will only install the CPU support for us to test our code. If you want to install the GPU support, use:...
Read more >
How to install trax, jax, jaxlib on M1 Mac on macOS 12?
This should allow you to install jax using ... poetry shell # to go to virtual environment for the project pip install --upgrade...
Read more >
Quickstart: Run a calculation on a Cloud TPU VM using JAX
Learn how to run a calculation on a Cloud TPU VM by using JAX and the Google Cloud CLI. ... For more information,...
Read more >
Model Zoo - Deep learning code and pretrained models for ...
JAX -RS & SpringMVC supported maven build plugin, helps you generate Swagger JSON and API ... Pytorch Poetry Generation ... pip install -r...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found