ImportError: libcudart.so.10.1: cannot open shared object file: No such file or directory
See original GitHub issue🐛 Bug
To Reproduce
Steps to reproduce the behavior:
- from torchvision import _C
from torchvision import _C Traceback (most recent call last): File “<stdin>”, line 1, in <module> ImportError: libcudart.so.10.1: cannot open shared object file: No such file or directory.
Environment
python collect_env.py
Collecting environment information...
PyTorch version: 1.1.0
Is debug build: False
CUDA used to build PyTorch: 10.0.130
ROCM used to build PyTorch: N/A
OS: Ubuntu 16.04.5 LTS (x86_64)
GCC version: (Ubuntu 8.4.0-1ubuntu1~16.04.1) 8.4.0
Clang version: Could not collect
CMake version: version 3.14.4
Python version: 3.6 (64-bit runtime)
Is CUDA available: True
CUDA runtime version: 10.0.130
GPU models and configuration:
GPU 0: GeForce GTX 1080 Ti
GPU 1: GeForce GTX 1080 Ti
GPU 2: GeForce GTX 1080 Ti
GPU 3: GeForce GTX 1080 Ti
GPU 4: GeForce GTX 1080 Ti
GPU 5: GeForce GTX 1080 Ti
GPU 6: GeForce GTX 1080 Ti
GPU 7: GeForce GTX 1080 Ti
Nvidia driver version: 418.39
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.7.5.0
/usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so.5.1.10
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
[pip3] numpy==1.19.5
[pip3] torch==1.1.0
[pip3] torchvision==0.4.2
[conda] cudatoolkit 10.0.130 hf841e97_6 conda-forge
[conda] mkl 2020.2 256
[conda] numpy 1.19.5 py36h2aa4a07_1 conda-forge
[conda] pytorch 1.1.0 py3.6_cuda10.0.130_cudnn7.5.1_0 pytorch
[conda] torchvision 0.3.0 py36_cu10.0.130_1 pytorch
Additional context
I was using fasterRCNN Object detector in torchvision while doing keep = nms(boxes_for_nms, scores, iou_threshold) it is giving this error. Easy way to reproduce this error is to run
from torchvision import _C
Please help.
Issue Analytics
- State:
- Created 3 years ago
- Comments:8 (1 by maintainers)
You need CUDA Toolkit 10.1. Your system has CUDA Toolkit 10.0
@IISCAditayTripathi I think you installed environment can be buggy:
Currently, the latest version of torchvision is 0.8.2. If you would like the latest version, please, follow on how to install the latest stable version of torchvision with conda (https://pytorch.org/get-started/locally/):
(make sure to use a clean environment or uninstall previous installations).