Servor error in interactive mode
See original GitHub issueRasa Core version: Version: 0.12.0 Python version: Python 3.6.7 Operating system: windows10
Issue:
I cloned a chatbot from GitHub and wanted to run it.
Yet, while using train_online.py
I got a ValueError and an HTTPError:
(chaenv36) C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation>python train_online.py
...
Epoch 99/100
113/113 [==============================] - 0s 133us/step - loss: 1.0234 - acc: 0.6018
Epoch 100/100
113/113 [==============================] - 0s 133us/step - loss: 1.0202 - acc: 0.6195
INFO:rasa_core.policies.keras_policy:Done fitting keras policy model
INFO:rasa_core.training.interactive:Rasa Core server is up and running on http://localhost:5005
Bot loaded. Visualisation at http://localhost:5005/visualization.html.
Type a message and press enter (press 'Ctr-c' to exit).
Processed Story Blocks: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 22/22 [00:00<00:00, 628.60it/s, # trackers=1]
? Next user input (Ctr-c to abort): Hey !
ERROR:rasa_core.server:Caught an exception while logging message.
Traceback (most recent call last):
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\server.py", line 437, in log_message
tracker = agent.log_message(usermsg)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\agent.py", line 341, in log_message
return processor.log_message(message)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\processor.py", line 129, in log_message
self._handle_message_with_tracker(message, tracker)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\processor.py", line 269, in _handle_message_with_tracker
parse_data = self._parse_message(message)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\processor.py", line 255, in _parse_message
parse_data = self.interpreter.parse(message.text)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\interpreter.py", line 293, in parse
return self.interpreter.parse(text)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_nlu\model.py", line 357, in parse
component.process(message, **self.context)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_nlu\classifiers\sklearn_intent_classifier.py", line 180, in process
intent_ids, probabilities = self.predict(X)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_nlu\classifiers\sklearn_intent_classifier.py", line 222, in predict
pred_result = self.predict_prob(X)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_nlu\classifiers\sklearn_intent_classifier.py", line 210, in predict_prob
return self.clf.predict_proba(X)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\sklearn\utils\metaestimators.py", line 115, in <lambda>
out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\sklearn\model_selection\_search.py", line 484, in predict_proba
return self.best_estimator_.predict_proba(X)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\sklearn\svm\base.py", line 594, in _predict_proba
X = self._validate_for_predict(X)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\sklearn\svm\base.py", line 459, in _validate_for_predict
(n_features, self.shape_fit_[1]))
ValueError: X.shape[1] = 300 should be equal to 384, the number of features at training time
ERROR:rasa_core.training.interactive:An exception occurred while recording messages.
Traceback (most recent call last):
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\training\interactive.py", line 1257, in record_messages
_enter_user_message(sender_id, endpoint)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\training\interactive.py", line 1110, in _enter_user_message
send_message(endpoint, sender_id, answers["message"])
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\training\interactive.py", line 119, in send_message
return _response_as_json(r)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\training\interactive.py", line 92, in _response_as_json
response.raise_for_status()
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\requests\models.py", line 940, in raise_for_status
raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 500 Server Error: INTERNAL SERVER ERROR for url: http://localhost:5005/conversations/default/messages
Googling the last error I read @tmbo answer here:
We have just recently added the NLU training data dumping feature to our master branch. Only if you run that version, the interactive learning will persist collected NLU training data. Because to correct these mistakes, you need to retrain your nlu model.
So I tried to retrain it but I had another error:
(chaenv36) C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation>python train_init.py
...
Processed Story Blocks: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 22/22 [00:00<00:00, 86.66it/s, # trackers=15]
Processed actions: 44it [00:00, 11002.11it/s, # examples=44]
2019-02-09 10:35:08.373081: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
masking (Masking) (None, 5, 22) 0
_________________________________________________________________
lstm (LSTM) (None, 32) 7040
_________________________________________________________________
dense (Dense) (None, 11) 363
_________________________________________________________________
activation (Activation) (None, 11) 0
=================================================================
Total params: 7,403
Trainable params: 7,403
Non-trainable params: 0
_________________________________________________________________
INFO:rasa_core.policies.keras_policy:Fitting model with 121 total samples and a validation split of 0.1
Traceback (most recent call last):
File "train_init.py", line 23, in <module>
validation_split = 0.2)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\agent.py", line 525, in train
**kwargs)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\policies\ensemble.py", line 67, in train
policy.train(training_trackers, domain, **kwargs)
File "C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\rasa_core\policies\keras_policy.py", line 177, in train
**params)
TypeError: fit() got multiple values for keyword argument 'epochs'
So I found an answer from @akelad
The correct command that worked for me for online training with the restaurant bot is:Β
python -m rasa_core.train -s data/babi_stories.md -o models/dialogue/ -d restaurant_domain.yml --online
I tried this but it also asked me the config
file so I provided it as well and got another error:
(chaenv36) C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation>python -m rasa_core.train -s data/data.md -o models/dialogue/ -d room_domain.yml -c config_spacy.json --online
C:\Users\antoi\Documents\Programming\Nathalie\7_2_2019\ChatbotRASA_Room-reservation\chaenv36\lib\site-packages\h5py\__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
usage: train.py [-h] {default,compare,interactive} ...
train.py: error: unrecognized arguments: --online
Content of domain file (if used & relevant):
slots:
name_room:
type: text
day:
type: text
hour_start:
type: text
duration:
type: text
intents:
- greet
- goodbye
- book_room
entities:
- name_room
- day
- hour_start
- duration
templates:
utter_greet:
- text: "Hey ! How can I help?"
- text: "Hi ! How can I help?"
- text: "YAZZZZZZAAAAA ! ... How can I help you ?"
utter_goodbye:
- text: "Bye :("
- text: "Talk to you later"
utter_ask_room:
- 'In what room?'
utter_ask_day:
- 'What day?'
utter_ask_hour_start:
- 'What time do you want to start your meeting?'
utter_ask_duration:
- 'How long would you need ?'
actions:
- utter_greet
- utter_goodbye
- utter_ask_room
- utter_ask_day
- utter_ask_hour_start
- utter_ask_duration
- action_room
Issue Analytics
- State:
- Created 5 years ago
- Comments:11 (6 by maintainers)
Top GitHub Comments
@EPedrotti can you take a look please?
This issue has been automatically closed because there has been no response to our request for more information from the original author. Without this, we donβt have enough information to help you. Please comment below with the requested information if you still need help.