Allow to disable all loggings
See original GitHub issueSystem information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 18.04
- Ray installed from (source or binary): pip install ray==0.7.1
- Ray version: 0.7.1
- Python version: 3.6.7
- Exact command to reproduce:
config = rllib.agents.ppo.DEFAULT_CONFIG.copy()
config['env'] = 'CartPole-v0'
tune.run(
run_or_experiment=rllib.agents.ppo.PPOTrainer,
name='RegressionTest',
stop={"timesteps_total": 10000},
config=config,
num_samples=1,
local_dir='logs',
checkpoint_at_end=True,
max_failures=0,
verbose=0,
reuse_actors=False,
resume=False,
)
Describe the problem
ray loggings below are polluting the console when I run my tests. I want to be able to run the previous code with noting printed in the console (except for exceptions of course). Attempts:
logging.disable(logging.CRITICAL)
ray.init(logging_level=logging.FATAL)
logging.basicConfig(level=logging.CRITICAL)
for logger_name in logging.root.manager.loggerDict:
logger = logging.getLogger(logger_name)
logger.propagate = False
logger.disabled = True
Source code / logs
(pid=30511) 2019-06-27 11:49:05,863 WARNING ppo.py:153 -- FYI: By default, the value function will not share layers with the policy model ('vf_share_layers': False).
(pid=30511) 2019-06-27 11:49:05,866 INFO policy_evaluator.py:311 -- Creating policy evaluation worker 0 on CPU (please ignore any CUDA init errors)
(pid=30511) 2019-06-27 11:49:05.866802: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
(pid=30511) 2019-06-27 11:49:05.873373: E tensorflow/stream_executor/cuda/cuda_driver.cc:300] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
(pid=30511) 2019-06-27 11:49:05.873424: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:163] retrieving CUDA diagnostic information for host: fontana
(pid=30511) 2019-06-27 11:49:05.873434: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:170] hostname: fontana
(pid=30511) 2019-06-27 11:49:05.873481: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:194] libcuda reported version is: 390.116.0
(pid=30511) 2019-06-27 11:49:05.873501: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:198] kernel reported version is: 390.116.0
(pid=30511) 2019-06-27 11:49:05.873506: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:305] kernel version seems to match DSO: 390.116.0
(pid=30511) 2019-06-27 11:49:05,965 INFO dynamic_tf_policy.py:265 -- Initializing loss function with dummy input:
(pid=30511)
(pid=30511) { 'action_prob': <tf.Tensor 'default_policy/action_prob:0' shape=(?,) dtype=float32>,
(pid=30511) 'actions': <tf.Tensor 'default_policy/actions:0' shape=(?,) dtype=int64>,
(pid=30511) 'advantages': <tf.Tensor 'default_policy/advantages:0' shape=(?,) dtype=float32>,
(pid=30511) 'behaviour_logits': <tf.Tensor 'default_policy/behaviour_logits:0' shape=(?, 2) dtype=float32>,
(pid=30511) 'dones': <tf.Tensor 'default_policy/dones:0' shape=(?,) dtype=bool>,
(pid=30511) 'new_obs': <tf.Tensor 'default_policy/new_obs:0' shape=(?, 4) dtype=float32>,
(pid=30511) 'obs': <tf.Tensor 'default_policy/observation:0' shape=(?, 4) dtype=float32>,
(pid=30511) 'prev_actions': <tf.Tensor 'default_policy/action:0' shape=(?,) dtype=int64>,
(pid=30511) 'prev_rewards': <tf.Tensor 'default_policy/prev_reward:0' shape=(?,) dtype=float32>,
(pid=30511) 'rewards': <tf.Tensor 'default_policy/rewards:0' shape=(?,) dtype=float32>,
(pid=30511) 'value_targets': <tf.Tensor 'default_policy/value_targets:0' shape=(?,) dtype=float32>,
(pid=30511) 'vf_preds': <tf.Tensor 'default_policy/vf_preds:0' shape=(?,) dtype=float32>}
(pid=30511)
(pid=30511) /home/federico/Desktop/repos/trading-gym/.venv/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:112: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
(pid=30511) "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
(pid=30511) 2019-06-27 11:49:06,548 INFO policy_evaluator.py:731 -- Built policy map: {'default_policy': <ray.rllib.policy.tf_policy_template.PPOTFPolicy object at 0x7f6a926613c8>}
(pid=30511) 2019-06-27 11:49:06,548 INFO policy_evaluator.py:732 -- Built preprocessor map: {'default_policy': <ray.rllib.models.preprocessors.NoPreprocessor object at 0x7f6a92661080>}
(pid=30511) 2019-06-27 11:49:06,548 INFO policy_evaluator.py:343 -- Built filter map: {'default_policy': <ray.rllib.utils.filter.NoFilter object at 0x7f6ceb1dce48>}
(pid=30511) 2019-06-27 11:49:06,562 INFO multi_gpu_optimizer.py:80 -- LocalMultiGPUOptimizer devices ['/cpu:0']
(pid=30504) 2019-06-27 11:49:06,566 INFO policy_evaluator.py:311 -- Creating policy evaluation worker 2 on CPU (please ignore any CUDA init errors)
(pid=30504) 2019-06-27 11:49:06.574578: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
(pid=30504) 2019-06-27 11:49:06.581124: E tensorflow/stream_executor/cuda/cuda_driver.cc:300] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
(pid=30504) 2019-06-27 11:49:06.581160: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:163] retrieving CUDA diagnostic information for host: fontana
(pid=30504) 2019-06-27 11:49:06.581166: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:170] hostname: fontana
(pid=30504) 2019-06-27 11:49:06.581197: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:194] libcuda reported version is: 390.116.0
(pid=30504) 2019-06-27 11:49:06.581216: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:198] kernel reported version is: 390.116.0
(pid=30504) 2019-06-27 11:49:06.581221: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:305] kernel version seems to match DSO: 390.116.0
(pid=30506) 2019-06-27 11:49:06,562 INFO policy_evaluator.py:311 -- Creating policy evaluation worker 1 on CPU (please ignore any CUDA init errors)
(pid=30506) 2019-06-27 11:49:06.570708: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
(pid=30506) 2019-06-27 11:49:06.577054: E tensorflow/stream_executor/cuda/cuda_driver.cc:300] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
(pid=30506) 2019-06-27 11:49:06.577090: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:163] retrieving CUDA diagnostic information for host: fontana
(pid=30506) 2019-06-27 11:49:06.577096: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:170] hostname: fontana
(pid=30506) 2019-06-27 11:49:06.577128: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:194] libcuda reported version is: 390.116.0
(pid=30506) 2019-06-27 11:49:06.577147: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:198] kernel reported version is: 390.116.0
(pid=30506) 2019-06-27 11:49:06.577153: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:305] kernel version seems to match DSO: 390.116.0
(pid=30506) 2019-06-27 11:49:06,707 INFO dynamic_tf_policy.py:265 -- Initializing loss function with dummy input:
(pid=30506)
(pid=30506) { 'action_prob': <tf.Tensor 'default_policy/action_prob:0' shape=(?,) dtype=float32>,
(pid=30506) 'actions': <tf.Tensor 'default_policy/actions:0' shape=(?,) dtype=int64>,
(pid=30506) 'advantages': <tf.Tensor 'default_policy/advantages:0' shape=(?,) dtype=float32>,
(pid=30506) 'behaviour_logits': <tf.Tensor 'default_policy/behaviour_logits:0' shape=(?, 2) dtype=float32>,
(pid=30506) 'dones': <tf.Tensor 'default_policy/dones:0' shape=(?,) dtype=bool>,
(pid=30506) 'new_obs': <tf.Tensor 'default_policy/new_obs:0' shape=(?, 4) dtype=float32>,
(pid=30506) 'obs': <tf.Tensor 'default_policy/observation:0' shape=(?, 4) dtype=float32>,
(pid=30506) 'prev_actions': <tf.Tensor 'default_policy/action:0' shape=(?,) dtype=int64>,
(pid=30506) 'prev_rewards': <tf.Tensor 'default_policy/prev_reward:0' shape=(?,) dtype=float32>,
(pid=30506) 'rewards': <tf.Tensor 'default_policy/rewards:0' shape=(?,) dtype=float32>,
(pid=30506) 'value_targets': <tf.Tensor 'default_policy/value_targets:0' shape=(?,) dtype=float32>,
(pid=30506) 'vf_preds': <tf.Tensor 'default_policy/vf_preds:0' shape=(?,) dtype=float32>}
(pid=30506)
(pid=30506) /home/federico/Desktop/repos/trading-gym/.venv/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:112: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
(pid=30506) "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
(pid=30504) /home/federico/Desktop/repos/trading-gym/.venv/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:112: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
(pid=30504) "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
(pid=30506) 2019-06-27 11:49:08,610 INFO policy_evaluator.py:437 -- Generating sample batch of size 200
(pid=30506) 2019-06-27 11:49:08,610 INFO sampler.py:308 -- Raw obs from env: { 0: { 'agent0': np.ndarray((4,), dtype=float64, min=-0.048, max=-0.002, mean=-0.023)}}
(pid=30506) 2019-06-27 11:49:08,610 INFO sampler.py:309 -- Info return from env: {0: {'agent0': None}}
(pid=30506) 2019-06-27 11:49:08,610 INFO sampler.py:407 -- Preprocessed obs: np.ndarray((4,), dtype=float64, min=-0.048, max=-0.002, mean=-0.023)
(pid=30506) 2019-06-27 11:49:08,610 INFO sampler.py:411 -- Filtered obs: np.ndarray((4,), dtype=float64, min=-0.048, max=-0.002, mean=-0.023)
(pid=30506) 2019-06-27 11:49:08,611 INFO sampler.py:525 -- Inputs to compute_actions():
(pid=30506)
(pid=30506) { 'default_policy': [ { 'data': { 'agent_id': 'agent0',
(pid=30506) 'env_id': 0,
(pid=30506) 'info': None,
(pid=30506) 'obs': np.ndarray((4,), dtype=float64, min=-0.048, max=-0.002, mean=-0.023),
(pid=30506) 'prev_action': np.ndarray((), dtype=int64, min=0.0, max=0.0, mean=0.0),
(pid=30506) 'prev_reward': 0.0,
(pid=30506) 'rnn_state': []},
(pid=30506) 'type': 'PolicyEvalData'}]}
(pid=30506)
(pid=30506) 2019-06-27 11:49:08,611 INFO tf_run_builder.py:92 -- Executing TF run without tracing. To dump TF timeline traces to disk, set the TF_TIMELINE_DIR environment variable.
(pid=30506) 2019-06-27 11:49:08,624 INFO sampler.py:552 -- Outputs of compute_actions():
(pid=30506)
(pid=30506) { 'default_policy': ( np.ndarray((1,), dtype=int64, min=0.0, max=0.0, mean=0.0),
(pid=30506) [],
(pid=30506) { 'action_prob': np.ndarray((1,), dtype=float32, min=0.5, max=0.5, mean=0.5),
(pid=30506) 'behaviour_logits': np.ndarray((1, 2), dtype=float32, min=0.0, max=0.0, mean=0.0),
(pid=30506) 'vf_preds': np.ndarray((1,), dtype=float32, min=-0.0, max=-0.0, mean=-0.0)})}
(pid=30506)
(pid=30506) 2019-06-27 11:49:08,640 INFO sample_batch_builder.py:161 -- Trajectory fragment after postprocess_trajectory():
(pid=30506)
(pid=30506) { 'agent0': { 'data': { 'action_prob': np.ndarray((30,), dtype=float32, min=0.499, max=0.501, mean=0.5),
(pid=30506) 'actions': np.ndarray((30,), dtype=int64, min=0.0, max=1.0, mean=0.433),
(pid=30506) 'advantages': np.ndarray((30,), dtype=float32, min=0.996, max=26.03, mean=14.1),
(pid=30506) 'agent_index': np.ndarray((30,), dtype=int64, min=0.0, max=0.0, mean=0.0),
(pid=30506) 'behaviour_logits': np.ndarray((30, 2), dtype=float32, min=-0.002, max=0.002, mean=-0.0),
(pid=30506) 'dones': np.ndarray((30,), dtype=bool, min=0.0, max=1.0, mean=0.033),
(pid=30506) 'eps_id': np.ndarray((30,), dtype=int64, min=1799405065.0, max=1799405065.0, mean=1799405065.0),
(pid=30506) 'infos': np.ndarray((30,), dtype=object, head={}),
(pid=30506) 'new_obs': np.ndarray((30, 4), dtype=float32, min=-1.549, max=1.994, mean=-0.017),
(pid=30506) 'obs': np.ndarray((30, 4), dtype=float32, min=-1.549, max=1.994, mean=-0.019),
(pid=30506) 'prev_actions': np.ndarray((30,), dtype=int64, min=0.0, max=1.0, mean=0.4),
(pid=30506) 'prev_rewards': np.ndarray((30,), dtype=float32, min=0.0, max=1.0, mean=0.967),
(pid=30506) 'rewards': np.ndarray((30,), dtype=float32, min=1.0, max=1.0, mean=1.0),
(pid=30506) 't': np.ndarray((30,), dtype=int64, min=0.0, max=29.0, mean=14.5),
(pid=30506) 'unroll_id': np.ndarray((30,), dtype=int64, min=0.0, max=0.0, mean=0.0),
(pid=30506) 'value_targets': np.ndarray((30,), dtype=float32, min=1.0, max=26.03, mean=14.101),
(pid=30506) 'vf_preds': np.ndarray((30,), dtype=float32, min=-0.003, max=0.004, mean=0.001)},
(pid=30506) 'type': 'SampleBatch'}}
(pid=30506)
(pid=30506) 2019-06-27 11:49:08,733 INFO policy_evaluator.py:474 -- Completed sample batch:
(pid=30506)
(pid=30506) { 'data': { 'action_prob': np.ndarray((200,), dtype=float32, min=0.499, max=0.501, mean=0.5),
(pid=30506) 'actions': np.ndarray((200,), dtype=int64, min=0.0, max=1.0, mean=0.515),
(pid=30506) 'advantages': np.ndarray((200,), dtype=float32, min=0.996, max=26.77, mean=9.865),
(pid=30506) 'agent_index': np.ndarray((200,), dtype=int64, min=0.0, max=0.0, mean=0.0),
(pid=30506) 'behaviour_logits': np.ndarray((200, 2), dtype=float32, min=-0.002, max=0.002, mean=0.0),
(pid=30506) 'dones': np.ndarray((200,), dtype=bool, min=0.0, max=1.0, mean=0.055),
(pid=30506) 'eps_id': np.ndarray((200,), dtype=int64, min=97813177.0, max=1937143959.0, mean=1165894504.795),
(pid=30506) 'infos': np.ndarray((200,), dtype=object, head={}),
(pid=30506) 'new_obs': np.ndarray((200, 4), dtype=float32, min=-2.025, max=2.593, mean=-0.002),
(pid=30506) 'obs': np.ndarray((200, 4), dtype=float32, min=-2.025, max=2.247, mean=-0.001),
(pid=30506) 'prev_actions': np.ndarray((200,), dtype=int64, min=0.0, max=1.0, mean=0.485),
(pid=30506) 'prev_rewards': np.ndarray((200,), dtype=float32, min=0.0, max=1.0, mean=0.94),
(pid=30506) 'rewards': np.ndarray((200,), dtype=float32, min=1.0, max=1.0, mean=1.0),
(pid=30506) 't': np.ndarray((200,), dtype=int64, min=0.0, max=30.0, mean=9.605),
(pid=30506) 'unroll_id': np.ndarray((200,), dtype=int64, min=0.0, max=0.0, mean=0.0),
(pid=30506) 'value_targets': np.ndarray((200,), dtype=float32, min=0.998, max=26.77, mean=9.864),
(pid=30506) 'vf_preds': np.ndarray((200,), dtype=float32, min=-0.004, max=0.004, mean=-0.001)},
(pid=30506) 'type': 'SampleBatch'}
(pid=30506)
(pid=30511) 2019-06-27 11:49:09,672 INFO multi_gpu_impl.py:146 -- Training on concatenated sample batches:
(pid=30511)
(pid=30511) { 'inputs': [ np.ndarray((4000,), dtype=int64, min=0.0, max=1.0, mean=0.483),
(pid=30511) np.ndarray((4000,), dtype=float32, min=0.0, max=1.0, mean=0.954),
(pid=30511) np.ndarray((4000, 4), dtype=float32, min=-2.611, max=2.68, mean=-0.001),
(pid=30511) np.ndarray((4000,), dtype=int64, min=0.0, max=1.0, mean=0.508),
(pid=30511) np.ndarray((4000,), dtype=float32, min=-1.226, max=4.359, mean=0.0),
(pid=30511) np.ndarray((4000, 2), dtype=float32, min=-0.003, max=0.004, mean=0.0),
(pid=30511) np.ndarray((4000,), dtype=float32, min=0.996, max=52.941, mean=12.399),
(pid=30511) np.ndarray((4000,), dtype=float32, min=-0.004, max=0.004, mean=-0.0)],
(pid=30511) 'placeholders': [ <tf.Tensor 'default_policy/action:0' shape=(?,) dtype=int64>,
(pid=30511) <tf.Tensor 'default_policy/prev_reward:0' shape=(?,) dtype=float32>,
(pid=30511) <tf.Tensor 'default_policy/observation:0' shape=(?, 4) dtype=float32>,
(pid=30511) <tf.Tensor 'default_policy/actions:0' shape=(?,) dtype=int64>,
(pid=30511) <tf.Tensor 'default_policy/advantages:0' shape=(?,) dtype=float32>,
(pid=30511) <tf.Tensor 'default_policy/behaviour_logits:0' shape=(?, 2) dtype=float32>,
(pid=30511) <tf.Tensor 'default_policy/value_targets:0' shape=(?,) dtype=float32>,
(pid=30511) <tf.Tensor 'default_policy/vf_preds:0' shape=(?,) dtype=float32>],
(pid=30511) 'state_inputs': []}
(pid=30511)
(pid=30511) 2019-06-27 11:49:09,672 INFO multi_gpu_impl.py:191 -- Divided 4000 rollout sequences, each of length 1, among 1 devices.
Issue Analytics
- State:
- Created 4 years ago
- Reactions:2
- Comments:9 (9 by maintainers)
Top Results From Across the Web
python - How to disable logging on the standard error stream?
I found a solution for this: logger = logging.getLogger('my-logger') logger.propagate = False # now if you use logger it will not log to...
Read more >How to disable logging from imported modules in Python?
To disable logging from imported modules in Python we need to use the getLogger() function. The getLogger() function. The name of the logger...
Read more >Question** Method to disable all logging · Issue #1382 - GitHub
Is there a method to disable logging? We have different log types setup (e.g. database, file, etc.) and there are times we don't...
Read more >Enabling and disabling logging - IBM
Open the administrative console. · Click Monitoring and Tuning > Request Metrics. · Under Request Metrics Destination, select the Standard Logs check box...
Read more >How can I enable/disable logging on specific devices?
To enable or disable logging for a specific device, find the device and toggle the Enabled switch: You can also enable or disable...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Ah,
log_to_driver
is not an argument oftune.run()
but ofray.init()
. Settingray.init(log_to_driver=False)
solved the problem for me. Thanks for the pointer!I don’t think there is a
log_to_driver
option: https://github.com/ray-project/ray/blob/master/python/ray/tune/tune.py#L71I get
TypeError: run() got an unexpected keyword argument 'log_to_driver'
trying it.