ImportError: cannot import name 'CategoricalEncoder'
See original GitHub issueAs simple as that. See below for system info. Tried uninstalling and re-installing package. CategoricalEncoder is nowhere to be found in the pip-distributed package
Steps/Code to Reproduce
Example:
>>> python
>>> from sklearn.preprocessing import CategoricalEncoder
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: cannot import name 'CategoricalEncoder'
Versions
>>> import platform; print(platform.platform())
Darwin-17.2.0-x86_64-i386-64bit
>>> import sys; print("Python", sys.version)
Python 3.6.1 (default, Apr 4 2017, 09:40:21)
[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.38)]
>>> import numpy; print("NumPy", numpy.__version__)
NumPy 1.14.0
>>> import scipy; print("SciPy", scipy.__version__)
SciPy 1.0.0
>>> import sklearn; print("Scikit-Learn", sklearn.__version__)
Scikit-Learn 0.19.1
The __init__.py
in sklearn.preprocessing
looks like this, which shows CategoricalEncoder is not included/implemented
"""
The :mod:`sklearn.preprocessing` module includes scaling, centering,
normalization, binarization and imputation methods.
"""
from ._function_transformer import FunctionTransformer
from .data import Binarizer
from .data import KernelCenterer
from .data import MinMaxScaler
from .data import MaxAbsScaler
from .data import Normalizer
from .data import RobustScaler
from .data import StandardScaler
from .data import QuantileTransformer
from .data import add_dummy_feature
from .data import binarize
from .data import normalize
from .data import scale
from .data import robust_scale
from .data import maxabs_scale
from .data import minmax_scale
from .data import quantile_transform
from .data import OneHotEncoder
from .data import PolynomialFeatures
from .label import label_binarize
from .label import LabelBinarizer
from .label import LabelEncoder
from .label import MultiLabelBinarizer
from .imputation import Imputer
__all__ = [
'Binarizer',
'FunctionTransformer',
'Imputer',
'KernelCenterer',
'LabelBinarizer',
'LabelEncoder',
'MultiLabelBinarizer',
'MinMaxScaler',
'MaxAbsScaler',
'QuantileTransformer',
'Normalizer',
'OneHotEncoder',
'RobustScaler',
'StandardScaler',
'add_dummy_feature',
'PolynomialFeatures',
'binarize',
'normalize',
'scale',
'robust_scale',
'maxabs_scale',
'minmax_scale',
'label_binarize',
'quantile_transform',
]
Issue Analytics
- State:
- Created 6 years ago
- Comments:16 (8 by maintainers)
Top Results From Across the Web
Categorical Encoder in Scikit Learn Preprocessing
I was trying to import Categorical Encoder in sklearn
Read more >scikit-learn - Gitter
Hello all, I want to take up a moderate issue or something significant not currently being worked upon by anyone. Is there an...
Read more >scikit-learn, NameError: name 'CategoricalEncoder' is not ...
ImportError: cannot import name 'CategoricalEncoder' · Issue #10579 · scikit-learn/scikit-learn. As simple as that.
Read more >[Scikit-learn] ImportError: cannot import name ... - Mizys
ImportError: cannot import name 'CategoricalEncoder' from 'sklearn.preprocessing' · Issue #14402 · scikit-learn/scikit-learn.
Read more >from sklearn.preprocessing import LabalEncoder Code Example
from sklearn.preprocessing import LabelEncoder le ... import classification_report · ImportError: cannot import name 'joblib' from ...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
@carlomazzaferro The
CategoricalEncoder
class has been introduced recently and will only be released in version0.20
. So if you install scikit-learn directly from the git repository you’ll have it, otherwise, you’ll have to wait for the next release! 😄You can have a look at the features that will be added in next release: here .
FWIW:
pip install https://github.com/scikit-learn/scikit-learn/archive/master.zip
is faster with the same result.