TestExp1.test_branch_cut test failure with Intel Fortran
See original GitHub issueRunning Windows Scipy 1.4.1 (compiled with MKL taken from https://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy) standard test suite with Python 3.7.6 x64 results in failure for TestExp1.test_branch_cut test:
_________________________________________________________________________________________________________ TestExp1.test_branch_cut _________________________________________________________________________________________________________
self = <scipy.special.tests.test_exponential_integrals.TestExp1 object at 0x00000296E7953EC8>
def test_branch_cut(self):
assert np.isnan(sc.exp1(-1))
> assert sc.exp1(complex(-1, 0)).imag == (
-sc.exp1(complex(-1, -0.0)).imag
)
E AssertionError: assert -3.141592653589793 == --3.141592653589793
E + where -3.141592653589793 = (-1.8951178163559368-3.141592653589793j).imag
E + where (-1.8951178163559368-3.141592653589793j) = <ufunc 'exp1'>((-1+0j))
E + where <ufunc 'exp1'> = sc.exp1
E + and (-1+0j) = complex(-1, 0)
E + and -3.141592653589793 = (-1.8951178163559368-3.141592653589793j).imag
E + where (-1.8951178163559368-3.141592653589793j) = <ufunc 'exp1'>((-1-0j))
E + where <ufunc 'exp1'> = sc.exp1
E + and (-1-0j) = complex(-1, -0.0)
self = <scipy.special.tests.test_exponential_integrals.TestExp1 object at 0x00000296E7953EC8>
C:\Program Files\Python\3.7.6\lib\site-packages\scipy\special\tests\test_exponential_integrals.py:12: AssertionError
On the same PC package manually compiled with MKL on Ubuntu 18.04 (Python 3.6.5) successfully passes all tests.
Issue Analytics
- State:
- Created 4 years ago
- Comments:25 (11 by maintainers)
Top Results From Across the Web
No results found
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
So I went and checked compiler support, and it seems like we might be ok targeting 2003. Opened this issue: https://github.com/scipy/scipy/issues/11421 so that we can make an official decision. Once that’s settled we can proceed here. 🤞 for 2003 support!
@rgommers, I made PR https://github.com/numpy/numpy/pull/18753, please help reviewing