regress_out failed in the pbmc3k tutorial
See original GitHub issueAxisError was encountered while executing the regress_out function following the pbmc3k tutorial …
sc.pp.regress_out(adata, ['n_counts', 'percent_mito'])
regressing out ['n_counts', 'percent_mito']
sparse input is densified and may lead to high memory use
---------------------------------------------------------------------------
AxisError Traceback (most recent call last)
<ipython-input-55-c0d016811ded> in <module>
----> 1 sc.pp.regress_out(adata, ['n_counts', 'percent_mito'])
~/anaconda3/envs/scanpy/lib/python3.6/site-packages/scanpy/preprocessing/_simple.py in regress_out(adata, keys, n_jobs, copy)
817 # split the adata.X matrix by columns in chunks of size n_chunk
818 # (the last chunk could be of smaller size than the others)
--> 819 chunk_list = np.array_split(adata.X, n_chunks, axis=1)
820 if variable_is_categorical:
821 regressors_chunk = np.array_split(regressors, n_chunks, axis=1)
<__array_function__ internals> in array_split(*args, **kwargs)
~/anaconda3/envs/scanpy/lib/python3.6/site-packages/numpy/lib/shape_base.py in array_split(ary, indices_or_sections, axis)
782
783 sub_arys = []
--> 784 sary = _nx.swapaxes(ary, axis, 0)
785 for i in range(Nsections):
786 st = div_points[i]
<__array_function__ internals> in swapaxes(*args, **kwargs)
~/anaconda3/envs/scanpy/lib/python3.6/site-packages/numpy/core/fromnumeric.py in swapaxes(a, axis1, axis2)
595
596 """
--> 597 return _wrapfunc(a, 'swapaxes', axis1, axis2)
598
599
~/anaconda3/envs/scanpy/lib/python3.6/site-packages/numpy/core/fromnumeric.py in _wrapfunc(obj, method, *args, **kwds)
56 bound = getattr(obj, method, None)
57 if bound is None:
---> 58 return _wrapit(obj, method, *args, **kwds)
59
60 try:
~/anaconda3/envs/scanpy/lib/python3.6/site-packages/numpy/core/fromnumeric.py in _wrapit(obj, method, *args, **kwds)
45 except AttributeError:
46 wrap = None
---> 47 result = getattr(asarray(obj), method)(*args, **kwds)
48 if wrap:
49 if not isinstance(result, mu.ndarray):
AxisError: axis1: axis 1 is out of bounds for array of dimension 0
Versions:
scanpy==1.4.5.post3 anndata==0.7.1 umap==0.3.10 numpy==1.18.1 scipy==1.4.1 pandas==0.25.3 scikit-learn==0.22.1 statsmodels==0.11.0 python-igraph==0.7.1 louvain==0.6.1
Issue Analytics
- State:
- Created 4 years ago
- Reactions:3
- Comments:5 (1 by maintainers)
Top Results From Across the Web
regress_out failed in the pbmc3k tutorial · Issue #1010 - GitHub
AxisError was encountered while executing the regress_out function following the pbmc3k tutorial ... sc.pp.regress_out(adata, ['n_counts', ...
Read more >Clustering 3K PBMCs with Scanpy - Galaxy Training!
In this tutorial, we will investigate clustering of single-cell data from 10x Genomics, including preprocessing, clustering and the identification of cell types ...
Read more >Seurat - Guided Clustering Tutorial - Satija Lab
For this tutorial, we will be analyzing the a dataset of Peripheral Blood Mononuclear Cells (PBMC) freely available from 10X Genomics. There are ......
Read more >pbmc10k - Pitt CRC
Regress out effects of total counts per cell and the percentage of mitochondrial genes expressed. Scale the data to unit variance. In [19]:....
Read more >Seurat.pdf - R Project
Error bound on the neighbor finding algorithm (from RANN/Annoy) verbose ... Cluster this distance matrix to determine a guide tree ...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
It looks like this is connected to the way anndata objects are sliced. An explicit
adata = adata.copy()
before callingsc.pp.regress_out()
solves the problem.Same here. I assume there is some issue with the implementation of the setter of adata.X, which prevents
adata.X = adata.X.toarray()
from updating X to its densified version.