Unexpected triangulation results for a concave shape
See original GitHub issueWhen triangulating a concave shape, I would expect that the edges of the shape would be preserved such that the outside edges of the geometry would become vertices for 1 or more of the resulting geometries.
If this assumption is incorrect, is there a method or parameter that could force this to be true for the result? Is that easily achievable?
Example plots:
Code to create the same situation (using same below geometry):
triangles = MultiPolygon(triangulate(largest, tolerance=0.001))
Here’s the WKT for this example geometry:
POLYGON ((-74.05644319847762 4.664371152795165, -74.05701264773319 4.663503533579181, -74.05770573357918 4.662810447733186, -74.05896428283818 4.662056102337443, -74.05990224838993 4.661771573597983, -74.06224145161008 4.661772473597984, -74.06317941716183 4.662057002337444, -74.06443796642083 4.662811347733187, -74.06572065226682 4.664052233579182, -74.06921901369725 4.668360960588712, -74.07141674761461 4.670691972117472, -74.07635895116509 4.673818151938486, -74.07894493390593 4.675834266094067, -74.08192435226682 4.679424333579181, -74.08891615226682 4.688383433579182, -74.08958587724112 4.689463067989243, -74.09086467349047 4.690719228823506, -74.09790275116509 4.694460551938487, -74.10034036642082 4.696114147733187, -74.10386724657296 4.698958762835078, -74.10814346936803 4.700870863662334, -74.10930545161006 4.700957773597984, -74.11043741716183 4.701320402337444, -74.11139045116509 4.701828051938487, -74.11214813390593 4.702449866094067, -74.11445885226682 4.704984433579183, -74.11521319766256 4.706242982838176, -74.11590442640203 4.70845234838992, -74.11611382363337 4.710865185701647, -74.11554750632175 4.71273208368413, -74.11467343390593 4.713910633905932, -74.11305131716183 4.714994497662556, -74.11211335161008 4.715279026402015, -74.11073328554708 4.715355222566556, -74.11041129766257 4.716545717161825, -74.1094660522668 4.718057466420818, -74.10756213390592 4.720161033905933, -74.10568445116508 4.721873348061513, -74.10420772338625 4.722584201678661, -74.10275629999998 4.7227995, -74.10130487661371 4.722584201678661, -74.09995094883489 4.721945648061514, -74.09403374773316 4.716245366420819, -74.09338219367824 4.71525808368413, -74.09288787359796 4.71387655161008, -74.09288787359796 4.711925648389919, -74.0936469519385 4.710096948834901, -74.09548963357916 4.708043347733187, -74.09763068874044 4.70677727898599, -74.09460666784895 4.704312469919607, -74.09203589291714 4.702595752799392, -74.08765371631586 4.700417706321742, -74.08459603357916 4.698508252266813, -74.08273894773316 4.696641066420818, -74.08206922275886 4.695561432010757, -74.08118604773318 4.694727366420818, -74.0717936025263 4.682825210334004, -74.06562484883489 4.678834648061513, -74.06390001213198 4.677314420684328, -74.0535710885149 4.739037649974117, -74.05520778283815 4.737937702337444, -74.05712119999998 4.7375571, -74.06045152338628 4.738003698321339, -74.06217206642083 4.738923347733187, -74.06340970632175 4.74043141631587, -74.06393542640203 4.74187004838992, -74.06400742363337 4.743335585701648, -74.063537026402 4.74698295161008, -74.06279044806149 4.748785351165098, -74.06139073691359 4.75018144712255, -74.0609743487264 4.751890490745711, -74.06128649999999 4.753612599999999, -74.06107120167866 4.755064023386272, -74.06039964806149 4.756487551165098, -74.0594142664208 4.757574752266813, -74.05806621716184 4.758372197662556, -74.05615280000001 4.7587528, -74.05377854838993 4.758482026402016, -74.0507277649826 4.757844764394359, -74.05055722640202 4.75945045161008, -74.04983964400328 4.762451751932777, -74.04873032640204 4.76925805161008, -74.04829449766255 4.770818617161826, -74.04766074258318 4.772140089033794, -74.04726809766255 4.773711517161825, -74.04651375226682 4.774970066420818, -74.04542655116509 4.775955448061513, -74.04410012338627 4.776582801678661, -74.04215861429836 4.776774023633361, -74.04029171631588 4.776207706321742, -74.03878364773318 4.774970066420818, -74.03800540233745 4.773666917161825, -74.03729177636662 4.771281485701648, -74.03727967636664 4.770004014298352, -74.03747549832134 4.769002476613728, -74.03843161386389 4.767199327773277, -74.04047532279198 4.75512284897233, -74.0369408023945 4.754256982815782, -74.03025007661371 4.753148101678661, -74.02876484883491 4.752415548061514, -74.02767764773319 4.751430166420819, -74.02692330233745 4.750171617161826, -74.02654087636664 4.748620285701648, -74.02683367636664 4.736912214298353, -74.02739999367826 4.73504531631587, -74.02863763357918 4.733537247733187, -74.03035817661373 4.732617598321339, -74.03229968570164 4.732426376366639, -74.03372301716183 4.732782902337444, -74.03534513390593 4.733866766094067, -74.03621920632175 4.73504531631587, -74.03676491551958 4.736773285680133, -74.04355019487681 4.738452884397855, -74.04767016881966 4.714185707761746, -74.04885077359798 4.706409648389919, -74.05027314410287 4.698677293675041, -74.05045487359796 4.696561148389919, -74.05077748485968 4.695365046361829, -74.05289107166563 4.682999393176747, -74.05422957359798 4.67404324838992, -74.05473458359565 4.671889824337649, -74.05543207359798 4.667273848389919, -74.05644319847762 4.664371152795165))
Shapely-1.6.1 Python 3.6
Issue Analytics
- State:
- Created 6 years ago
- Comments:11 (2 by maintainers)
Top Results From Across the Web
Unexpected triangulation results for a concave shape #518
When triangulating a concave shape, I would expect that the edges of the shape would be preserved such that the outside edges of...
Read more >POLYGONS 1
For a convex polygon P, where every pair of nonadjacent vertices determines a diagonal, it is possible to count the number of triangulations...
Read more >Linear-size Nonobtuse Triangulation of Polygons
We give an algorithm for triangulating n-vertex polygonal regions (with holes) so ... pie-shaped sector, namely the convex hull of the arc and...
Read more >29 TRIANGULATIONS AND MESH GENERATION
to triangulate (without Steiner points) a convex polyhedron is NP-complete. And when we move to nonconvex polyhedra, we get an even worse surprise:...
Read more >David Eppstein - Mesh generation and optimal triangulation
For many other optimal triangulation problems, flipping is insufficient, but the problems can instead be solved by a more general local improvement step...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Delaunay Triangulation does not respect edges - it only takes into account points. To respect edges you need to use Constrained or Conforming Delaunay Triangulation. JTS has a Conforming implementation; not sure of the status of this in GEOS.
Conforming triangulation has been put on Milestone 3.9 of GEOS. Maybe Shapely can have this after GEOS implements it?