export_to_phy error: Input contains NaN, infinity or a value too large for dtype('float32')
See original GitHub issueHello folks! I’m using kilosort3 on neuropixel 1.0 data in spikeinterface: This error occurs when I export waveforms to phy: Thank you!
Warning: empty units have been removed when being exported to Phy
write_binary_recording with n_jobs 1 chunk_size 3125000
write_binary_recording: 100%|############################################################| 2/2 [00:00<00:00, 17.85it/s]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Input In [29], in <module>
1 start_time = time.time()
----> 2 export_to_phy(we_KS3, output_folder='_phy_KS3',
3 progress_bar=True, total_memory='100M')
4 print("--- _phy_KS3 took %s seconds ---" % (time.time() - start_time))
File ~\anaconda3\envs\siphy_env\lib\site-packages\spikeinterface\exporters\to_phy.py:161, in export_to_phy(waveform_extractor, output_folder, compute_pc_features, compute_amplitudes, sparsity_dict, copy_binary, max_channels_per_template, remove_if_exists, peak_sign, template_mode, dtype, verbose, **job_kwargs)
158 templates.append(template_full)
159 templates_ind.append(inds_full)
--> 161 template_similarity = compute_template_similarity(waveform_extractor, method='cosine_similarity')
163 np.save(str(output_folder / 'templates.npy'), templates)
164 np.save(str(output_folder / 'template_ind.npy'), templates_ind)
File ~\anaconda3\envs\siphy_env\lib\site-packages\spikeinterface\toolkit\postprocessing\template_similarity.py:37, in compute_template_similarity(waveform_extractor, waveform_extractor_other, method)
35 else:
36 templates_other_flat = None
---> 37 similarity = sklearn.metrics.pairwise.cosine_similarity(templates_flat, templates_other_flat)
38 # elif method == '':
39 else:
40 raise ValueError(f'compute_template_similarity(method {method}) not exists')
File ~\anaconda3\envs\siphy_env\lib\site-packages\sklearn\metrics\pairwise.py:1251, in cosine_similarity(X, Y, dense_output)
1217 """Compute cosine similarity between samples in X and Y.
1218
1219 Cosine similarity, or the cosine kernel, computes similarity as the
(...)
1247 kernel matrix : ndarray of shape (n_samples_X, n_samples_Y)
1248 """
1249 # to avoid recursive import
-> 1251 X, Y = check_pairwise_arrays(X, Y)
1253 X_normalized = normalize(X, copy=True)
1254 if X is Y:
File ~\anaconda3\envs\siphy_env\lib\site-packages\sklearn\metrics\pairwise.py:147, in check_pairwise_arrays(X, Y, precomputed, dtype, accept_sparse, force_all_finite, copy)
144 dtype = dtype_float
146 if Y is X or Y is None:
--> 147 X = Y = check_array(
148 X,
149 accept_sparse=accept_sparse,
150 dtype=dtype,
151 copy=copy,
152 force_all_finite=force_all_finite,
153 estimator=estimator,
154 )
155 else:
156 X = check_array(
157 X,
158 accept_sparse=accept_sparse,
(...)
162 estimator=estimator,
163 )
File ~\anaconda3\envs\siphy_env\lib\site-packages\sklearn\utils\validation.py:800, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
794 raise ValueError(
795 "Found array with dim %d. %s expected <= 2."
796 % (array.ndim, estimator_name)
797 )
799 if force_all_finite:
--> 800 _assert_all_finite(array, allow_nan=force_all_finite == "allow-nan")
802 if ensure_min_samples > 0:
803 n_samples = _num_samples(array)
File ~\anaconda3\envs\siphy_env\lib\site-packages\sklearn\utils\validation.py:114, in _assert_all_finite(X, allow_nan, msg_dtype)
107 if (
108 allow_nan
109 and np.isinf(X).any()
110 or not allow_nan
111 and not np.isfinite(X).all()
112 ):
113 type_err = "infinity" if allow_nan else "NaN, infinity"
--> 114 raise ValueError(
115 msg_err.format(
116 type_err, msg_dtype if msg_dtype is not None else X.dtype
117 )
118 )
119 # for object dtype data, we only check for NaNs (GH-13254)
120 elif X.dtype == np.dtype("object") and not allow_nan:
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
Issue Analytics
- State:
- Created 2 years ago
- Comments:10 (8 by maintainers)
Top Results From Across the Web
Input contains NaN, infinity or a value too large for dtype ...
I have built an input matrix and I keep getting the following error. ValueError: Input contains NaN, infinity or a value too large...
Read more >ValueError: Input contains NaN, infinity or a value too large for ...
If your values are larger than float32 , try to run some scaler first. It'd be rather unusual to have deviation spanning more...
Read more >Input contains infinity or a value too large for dtype('float64').
This error usually occurs when you attempt to use some function from the scikit-learn module, but the DataFrame or matrix you're using as...
Read more >ValueError: Input contains NaN, infinity or a value too ... - Kaggle
While using simple XGBoosting i'm not getting this error. But while doing hyperparameter tuning with RandomizedSearchCV i'm getting this error.
Read more >How To Fix the “Input Contains Nan, Infinity or a Value Too ...
The cause of the valueerror: input contains nan, infinity, or a value too large for dtype('float64') could be because of having any NaN...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
It worked perfectly! Again, thank you guys so much for your efforts to this community! Amazing 😃
Closing then!