How to add more features to the item_model
See original GitHub issueI added new features to the user model according to the method in the tutorial, but there are errors when using the same method to add new features to the item model. What is the reason, or how to add more item features to the item model. The code is as follows: user_model:
`class UserModel(tf.keras.Model):
def __init__(self):
super().__init__()
# user_embedding用户id层
self.user_embedding = tf.keras.Sequential( [
tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=unique_user_ids, mask_token = None),
tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
])
# 时间戳特征层
self.timestamp_embedding = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()),
tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
])
self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization()
self.normalized_timestamp.adapt(bhv_time)
# 购买能力特征
self.normalized_age = tf.keras.layers.experimental.preprocessing.Normalization()
self.normalized_age.adapt(bhv_value)
def call(self, inputs):
# 输入为字典类型
return tf.concat([
self.user_embedding(inputs['user_id']),
self.timestamp_embedding(inputs['bhv_time']),
self.normalized_timestamp(inputs['bhv_time']),
self.normalized_age(inputs['bhv_value']),
], axis = 1)`
item_model:
`class ItemModel(tf.keras.Model):
def __init__(self):
super().__init__()
max_tokens = 1000 # 最大标签数
self.title_embedding = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary = unique_item_titles, mask_token = None),
tf.keras.layers.Embedding(len(unique_item_titles) + 1, 32),
])
self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
max_tokens = max_tokens) # 文本转换为向量
self.title_text_embedding = tf.keras.Sequential([
self.title_vectorizer,
tf.keras.layers.Embedding(max_tokens, 32, mask_zero = True),
tf.keras.layers.GlobalAveragePooling1D(), # 全局均值池化
])
# self.title_vectorizer.adapt(titles)
def call(self, inputs):
# 输入为字典类型
return tf.concat([
self.title_embedding(inputs['item_id']),
self.title_text_embedding(inputs['title']),
], axis = 1)`
`class ItemlensModel(tfrs.models.Model):
def __init__(self,):
super().__init__()
# 查询模型
# self.query_model = UserModel()
self.query_model = tf.keras.Sequential([
UserModel(),
tf.keras.layers.Dense(32)
],name = 'query_name')
# 候选者模型
# self.candidate_model = ItemModel()
self.candidate_model = tf.keras.Sequential([
ItemModel(),
tf.keras.layers.Dense(32)
])
# 任务
self.task = tfrs.tasks.Retrieval(
metrics = tfrs.metrics.FactorizedTopK(
# candidates = items.batch(128).map(self.candidate_model),
candidates = items.batch(128).map(self.candidate_model),
)
)
# 计算损失函数
def compute_loss(self, features, training = False):
query_embeddings = self.query_model({
'user_id': features['user_id'],
'bhv_time': features['bhv_time'],
'bhv_value': features['bhv_value'],
})
item_embeddings = self.candidate_model({
'item_id': features['item_id'],
'title': features['title'],
})
return self.task(query_embeddings, item_embeddings)`
There is no problem with the user model part, and the following error occurs in the item model part:

Issue Analytics
- State:
- Created 2 years ago
- Reactions:1
- Comments:6
Top Results From Across the Web
Add new to-do items · Little ASP.NET Core Book
The user will add new to-do items with a simple form below the list: Final form. Adding this feature requires a few steps:...
Read more >Create New Features From Existing Features - OpenClassrooms
Create New Features From Existing Features. Log in or subscribe for free to enjoy all this course has to offer! Feature Engineering.
Read more >How to create RecyclerView with multiple view types
The functions needed to define in this class are pretty much same as the adapter class when creating the single view type. For...
Read more >Model - Minecraft Wiki - Fandom
This feature is exclusive to Java Edition. ... Please expand the section to include this information. Further details may exist on the talk...
Read more >QStandardItemModel — Qt for Python
Constructs a new item model that initially has rows rows and columns columns, ... this function provides a convenient way to append a...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found

I also ran into this issue, and managed to fix it by making
itemsadictlike:yes, i solved it that way too.
itemsneeds to have same variables that item tower.