Eager execution with TensorBoard Beholder
See original GitHub issueEnvironment information
Diagnostics
Diagnostics output
--- check: autoidentify
INFO: diagnose_tensorboard.py version 4757bed82ecd75d96baf8210f75638afd2e07c63
--- check: general
INFO: sys.version_info: sys.version_info(major=3, minor=6, micro=8, releaselevel='final', serial=0)
INFO: os.name: posix
INFO: os.uname(): posix.uname_result(sysname='Darwin', nodename='SumanthRatnasAir', release='19.2.0', version='Darwin Kernel Version 19.2.0: Wed Nov 13 22:22:44 PST 2019; root:xnu-6153.61.1~26/RELEASE_X86_64', machine='x86_64')
INFO: sys.getwindowsversion(): N/A
--- check: package_management
INFO: has conda-meta: False
INFO: $VIRTUAL_ENV: '/Users/suman/.local/share/virtualenvs/mlencrypt-research-PwGoqeJm'
--- check: installed_packages
INFO: installed: tensorboard==2.0.2
INFO: installed: tensorflow==2.0.0
INFO: installed: tensorflow-estimator==2.0.1
--- check: tensorboard_python_version
INFO: tensorboard.version.VERSION: '2.0.2'
--- check: tensorflow_python_version
INFO: tensorflow.__version__: '2.0.0'
INFO: tensorflow.__git_version__: 'v2.0.0-rc2-26-g64c3d382ca'
--- check: tensorboard_binary_path
INFO: which tensorboard: b'/Users/suman/.local/share/virtualenvs/mlencrypt-research-PwGoqeJm/bin/tensorboard\n'
--- check: addrinfos
socket.has_ipv6 = True
socket.AF_UNSPEC = <AddressFamily.AF_UNSPEC: 0>
socket.SOCK_STREAM = <SocketKind.SOCK_STREAM: 1>
socket.AI_ADDRCONFIG = <AddressInfo.AI_ADDRCONFIG: 1024>
socket.AI_PASSIVE = <AddressInfo.AI_PASSIVE: 1>
Loopback flags: <AddressInfo.AI_ADDRCONFIG: 1024>
Loopback infos: [(<AddressFamily.AF_INET6: 30>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('::1', 0, 0, 0)), (<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('127.0.0.1', 0))]
Wildcard flags: <AddressInfo.AI_PASSIVE: 1>
Wildcard infos: [(<AddressFamily.AF_INET6: 30>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('::', 0, 0, 0)), (<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('0.0.0.0', 0))]
--- check: readable_fqdn
INFO: socket.getfqdn(): 'SumanthRatnasAir'
--- check: stat_tensorboardinfo
INFO: directory: /var/folders/j8/_wc022w91rvctlq5_t8xqcvc0000gn/T/.tensorboard-info
INFO: os.stat(...): os.stat_result(st_mode=16895, st_ino=63401941, st_dev=16777220, st_nlink=2, st_uid=501, st_gid=20, st_size=64, st_atime=1575740073, st_mtime=1575759927, st_ctime=1575759927)
INFO: mode: 0o40777
--- check: source_trees_without_genfiles
INFO: tensorboard_roots (1): ['/Users/suman/.local/share/virtualenvs/mlencrypt-research-PwGoqeJm/lib/python3.6/site-packages']; bad_roots (0): []
--- check: full_pip_freeze
INFO: pip freeze --all:
absl-py==0.8.1
astor==0.8.0
cachetools==3.1.1
certifi==2019.11.28
cffi==1.13.2
chardet==3.0.4
Click==7.0
cryptography==2.8
cycler==0.10.0
gast==0.2.2
google-auth==1.7.2
google-auth-oauthlib==0.4.1
google-pasta==0.1.8
grpcio==1.25.0
h5py==2.10.0
idna==2.8
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
matplotlib==3.1.2
mlencrypt==0.1
numpy==1.17.4
oauthlib==3.1.0
opt-einsum==3.1.0
pandas==0.25.3
pip==19.3.1
protobuf==3.11.1
pyAesCrypt==0.4.3
pyasn1==0.4.8
pyasn1-modules==0.2.7
pycparser==2.19
pydicom==1.3.0
pyparsing==2.4.5
python-dateutil==2.8.1
pytz==2019.3
requests==2.22.0
requests-oauthlib==1.3.0
rsa==4.0
scipy==1.3.3
seaborn==0.9.0
setuptools==42.0.1
six==1.13.0
tensorboard==2.0.2
tensorflow==2.0.0
tensorflow-estimator==2.0.1
termcolor==1.1.0
urllib3==1.25.7
Werkzeug==0.16.0
wheel==0.33.6
wrapt==1.11.2
Next steps
No action items identified.
Issue description
Using TensorFlow 2.0 and Eager Execution, I’m unable to set up Beholder.
Here’s the error output:
Traceback (most recent call last):
File "mlencrypt.py", line 12, in <module>
beholder = Beholder(logdir)
File ".../lib/python3.6/site-packages/tensorboard/plugins/beholder/beholder.py", line 50, in __init__
self.frame_placeholder = tf.compat.v1.placeholder(tf.uint8, [None, None, None])
File ".../lib/python3.6/site-packages/tensorflow_core/python/ops/array_ops.py", line 2627, in placeholder
raise RuntimeError("tf.placeholder() is not compatible with "
RuntimeError: tf.placeholder() is not compatible with eager execution.
Right before it, I run tf.config.experimental_run_functions_eagerly(True)
but if I comment out this line, I still get the same error.
Issue Analytics
- State:
- Created 4 years ago
- Comments:6 (1 by maintainers)
Top Results From Across the Web
How to visualize keras convolutional filters in Tensorboard ...
After much searching, it appears that currently there is no library-based way to achieve this (including beholder), if you are also using tf....
Read more >Debugging TensorFlow with TensorBoard plugins ... - YouTube
Watch this demo of the TensorFlow Debugger, an interactive web GUI for controlling the execution of TensorFlow models, setting breakpoints, ...
Read more >Eager Execution vs. Graph Execution in TensorFlow: Which is ...
Eager execution is a powerful execution environment that evaluates operations immediately. It does not build graphs, and the operations return ...
Read more >I prefer graph execution over eager mode in TensorFlow
[D] Unpopular opinion: I prefer graph execution over eager mode in TensorFlow. Coming from compsci, I know static analysis and compile steps ...
Read more > Paige Bailey #BlackLivesMatter on Twitter: " #TFadvent #17 ...
Beholder, by Chris Anderson: a @TensorBoard plugin for viewing frames of a video while ... If you've been wanting to understand eager execution...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Not exactly related to this issue, but are there any plans to make Beholder work with autograph in TensorFlow 2?
TensorBoard 2.0 does not officially support beholder.
It was written for the graph mode in v1 and it was not modified to work with the eager mode. We’d welcome any contributions to enable it!