PR Curve Summary Ops Not Working with TensorFlow 2.0
See original GitHub issueEnvironment information (required)
Diagnostics
Diagnostics output
--- check: autoidentify
INFO: diagnose_tensorboard.py version 4725c70c7ed724e2d1b9ba5618d7c30b957ee8a4
--- check: general
INFO: sys.version_info: sys.version_info(major=3, minor=7, micro=4, releaselevel='final', serial=0)
INFO: os.name: posix
INFO: os.uname(): posix.uname_result(sysname='Linux', nodename='[redacted]', release='3.10.0-1062.1.1.el7.x86_64', version='#1 SMP Fri Sep 13 22:55:44 UTC 2019', machine='x86_64')
INFO: sys.getwindowsversion(): N/A
--- check: package_management
INFO: has conda-meta: True
INFO: $VIRTUAL_ENV: None
--- check: installed_packages
INFO: installed: tensorboard==2.0.1
INFO: installed: tensorflow-gpu==2.0.0
INFO: installed: tensorflow-estimator==2.0.1
--- check: tensorboard_python_version
INFO: tensorboard.version.VERSION: '2.0.1'
--- check: tensorflow_python_version
INFO: tensorflow.__version__: '2.0.0'
INFO: tensorflow.__git_version__: 'v2.0.0-rc2-26-g64c3d38'
--- check: tensorboard_binary_path
INFO: which tensorboard: b'[redacted]\n'
--- check: readable_fqdn
INFO: socket.getfqdn(): 'gpu-1'
--- check: stat_tensorboardinfo
INFO: directory: /tmp/.tensorboard-info
INFO: os.stat(...): os.stat_result(st_mode=16895, st_ino=262158, st_dev=64772, st_nlink=2, st_uid=1002, st_gid=1003, st_size=4096, st_atime=1572522005, st_mtime=1573152354, st_ctime=1573152354)
INFO: mode: 0o40777
--- check: source_trees_without_genfiles
INFO: tensorboard_roots (1): ['[redacted]/.conda/envs/[redacted]/lib/python3.7/site-packages']; bad_roots (0): []
--- check: full_pip_freeze
INFO: pip freeze --all:
absl-py==0.8.0
ana==0.5
archinfo==8.19.7.25
asn1crypto==1.2.0
astor==0.8.0
atomicwrites==1.3.0
attrs==19.3.0
backcall==0.1.0
bitstring==3.1.5
bleach==3.1.0
boto==2.49.0
boto3==1.9.234
botocore==1.12.234
bz2file==0.98
cachetools==3.1.0
certifi==2019.9.11
cffi==1.13.0
chardet==3.0.4
Click==7.0
colorama==0.4.1
cooldict==1.4
cryptography==2.8
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
docutils==0.15.2
dpkt==1.9.2
entrypoints==0.3
filelock==3.0.12
funcsigs==1.0.2
future==0.17.1
gast==0.2.2
gensim==3.8.0
gitdb2==2.0.5
GitPython==2.1.11
google-auth==1.7.0
google-auth-oauthlib==0.4.1
grpcio==1.25.0
h5py==2.9.0
html5lib==1.0.1
humanfriendly==4.18
idalink==0.12
idna==2.8
imbalanced-learn==0.5.0
imblearn==0.0
importlib-metadata==0.23
ipykernel==5.1.2
ipython==7.8.0
ipython-genutils==0.2.0
ipywidgets==7.5.1
itanium-demangler==1.0
jedi==0.15.1
Jinja2==2.10.3
jmespath==0.9.4
joblib==0.14.0
jsonschema==3.1.1
jupyter==1.0.0
jupyter-client==5.3.4
jupyter-console==6.0.0
jupyter-core==4.6.0
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==3.1.1
mistune==0.8.4
mkl-fft==1.0.14
mkl-random==1.1.0
mkl-service==2.3.0
mock==3.0.5
more-itertools==7.2.0
mulpyplexer==0.8
nbconvert==5.6.0
nbformat==4.4.0
networkx==2.3
notebook==6.0.1
numpy==1.17.2
oauthlib==3.1.0
olefile==0.46
opt-einsum==3.1.0
packaging==19.1
pandas==0.25.2
pandocfilters==1.4.2
parso==0.5.1
pbr==5.4.3
pefile==2019.4.18
pexpect==4.7.0
pickleshare==0.7.5
Pillow==6.2.0
pip==19.3.1
plac==1.1.0
plotly==4.1.1
pluggy==0.12.0
plumbum==1.6.7
prince==0.6.3
progressbar==2.5
prometheus-client==0.7.1
prompt-toolkit==2.0.10
protobuf==3.9.2
psutil==5.6.2
ptyprocess==0.6.0
py==1.8.0
pyasn1==0.4.7
pyasn1-modules==0.2.7
pyclustertend==1.3.2
pycparser==2.19
pydot==1.4.1
pyelftools==0.25
Pygments==2.4.2
pygraphviz==1.3
pyOpenSSL==19.0.0
pyparsing==2.4.2
pyrsistent==0.15.4
PySMT==0.8.0
PySocks==1.7.1
pytest==5.1.2
python-dateutil==2.8.0
pytz==2019.3
pyvex==8.19.7.25
PyYAML==5.1.2
pyzmq==18.1.0
qtconsole==4.5.5
ray==0.7.4
redis==3.3.8
requests==2.22.0
requests-oauthlib==1.3.0
retrying==1.3.3
rpyc==4.0.2
rsa==4.0
s3transfer==0.2.1
scikit-learn==0.21.3
scipy==1.3.1
Send2Trash==1.5.0
setuptools==41.4.0
six==1.12.0
smart-open==1.8.4
smmap2==2.0.5
sortedcontainers==2.1.0
tensorboard==2.0.1
tensorflow-estimator==2.0.1
tensorflow-gpu==2.0.0
termcolor==1.1.0
terminado==0.8.2
testpath==0.4.2
tornado==6.0.3
tqdm==4.36.1
traitlets==4.3.3
unicorn==1.0.1
urllib3==1.24.2
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.16.0
wheel==0.33.6
widgetsnbextension==3.5.1
wrapt==1.11.2
z3-solver==4.5.1.0.post2
zipp==0.6.0
Next steps
Issue description
I am unable to write a PR curve to TensorBoard with TF 2.0 I’ve attempted using the built-in summary builders and attempted to build my own summaries. None of them seem to work.
Are these intended to work in TF 2.0?
I will update this with whatever code is requested.
Issue Analytics
- State:
- Created 4 years ago
- Comments:6 (2 by maintainers)
Top Results From Across the Web
Migrating tf.summary usage to TF 2.x | TensorBoard
Integrating both halves of the API means the summary.FileWriter is now part of the TensorFlow execution context and gets accessed directly by tf ......
Read more >Effective Tensorflow 2 | TensorFlow Core
Overview. This guide provides a list of best practices for writing code using TensorFlow 2 (TF2), it is written for users who have...
Read more >tf.keras.metrics.AUC | TensorFlow v2.11.0
The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area...
Read more >Profile model performance | TensorBoard
Overview. Machine learning algorithms are typically computationally expensive. It is thus vital to quantify the performance of your machine ...
Read more >Introduction to graphs and tf.function | TensorFlow Core
Since these graphs are data structures, they can be saved, run, and restored all without the original Python code. This is what a...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
We don’t yet have a TF 2.0-native version of the PR curve summary op, but it should be possible using an experimental
write_raw_pb
option to take output generated by the existing TF 1.x-era summary ops and feed them into the new TF 2.0 writing APIs, if that’s the roadblock you’re running into. For example:If that’s not the problem you’re running into, could you provide some short sample code that illustrates what you’re trying to do?
Hi @nfelt, the workaround you posted above does work for me as well. I just wanted to ask whether you are actually still planning to migrate the PR Curve summary code to TF 2.0. In case this is very low prio or not currently planned, would you accept a PR?