question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

when training using tf 2.4.1 ,

training code CUDA_VISIBLE_DEVICES=0 python examples/multiband_melgan/train_multiband_melgan.py \ --train-dir ./dump/train/ \ --dev-dir ./dump/valid/ \ --outdir ./examples/multiband_melgan/exp/train.multiband_melgan.v1/ \ --config ./examples/multiband_melgan/conf/multiband_melgan.v1.yaml \ --use-norm 1 \ The following error occurred

2021-04-20 13:30:56.974771: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:656] In AUTO-mode, and switching to DATA-based sharding, instead of FILE-based sharding as we cannot find appropriate reader dataset op(s) to shard. Error: Did not find a shardable source, walked to a node which is not a dataset: name: "FlatMapDataset/_3" op: "FlatMapDataset" input: "TensorDataset/_1" input: "Const/_2" attr { key: "Targuments" value { list { type: DT_STRING } } } attr { key: "f" value { func { name: "__inference_Dataset_flat_map_flat_map_fn_31" } } } attr { key: "output_shapes" value { list { shape { unknown_rank: true } shape { unknown_rank: true } shape { unknown_rank: true } } } } attr { key: "output_types" value { list { type: DT_STRING type: DT_STRING type: DT_STRING } } } . Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. You can do this by creating a new tf.data.Options()object then settingoptions.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATAbefore applying the options object to the dataset viadataset.with_options(options). 2021-04-20 13:30:56.997978: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:656] In AUTO-mode, and switching to DATA-based sharding, instead of FILE-based sharding as we cannot find appropriate reader dataset op(s) to shard. Error: Did not find a shardable source, walked to a node which is not a dataset: name: "FlatMapDataset/_3" op: "FlatMapDataset" input: "TensorDataset/_1" input: "Const/_2" attr { key: "Targuments" value { list { type: DT_STRING } } } attr { key: "f" value { func { name: "__inference_Dataset_flat_map_flat_map_fn_538" } } } attr { key: "output_shapes" value { list { shape { unknown_rank: true } shape { unknown_rank: true } shape { unknown_rank: true } } } } attr { key: "output_types" value { list { type: DT_STRING type: DT_STRING type: DT_STRING } } } . Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. You can do this by creating a new tf.data.Options()object then settingoptions.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATAbefore applying the options object to the dataset viadataset.with_options(options).

Issue Analytics

  • State:closed
  • Created 2 years ago
  • Comments:8 (4 by maintainers)

github_iconTop GitHub Comments

1reaction
tts-nlpcommented, Apr 20, 2021

@k-grygiel thanks! the bugs fixed !

1reaction
k-grygielcommented, Apr 20, 2021

Try adding this in audio_mel_dataset.py

Read more comments on GitHub >

github_iconTop Results From Across the Web

Tensorflow 2.4.1 AUC bug · Issue #47132 - GitHub
Hi, I think there is a bug in tf 2.4.1. If I use tf 2.3.2 it works fine, if I clone the environment...
Read more >
New Tensorflow 2.4 GPU issues - python - Stack Overflow
In a conda environment I have: python = 3.8; tensorflow = 2.4.1 (which I understand is the new way of having the GPU...
Read more >
TensorFlow 2.5.0 Released! - Announcements
**Describe the current behavior** GPU doesn't work with TF 2.5.0 (any visible ... If you're still seeing 2.4.1 get a new VM with:...
Read more >
TensorFlow al Twitter: " TensorFlow 2.4.0-rc1 is here! Please see ...
TensorFlow 2.4.0-rc1 is here! Please see the full release notes for details on added features, breaking changes, and bug fixes. Details ↓. Tradueix...
Read more >
Install TensorFlow 2.4.0 on Raspberry 64 OS - Q-engineering
A thorough guide on how to install TensorFlow 2.4.0 or 2.4.1 on your Raspberry Pi 4. Build also from source code with Bazel...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found