question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

No such operator xformers::efficient_attention_forward_cutlass

See original GitHub issue

Traceback (most recent call last): File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py”, line 45, in f res = list(func(*args, **kwargs)) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py”, line 28, in f res = func(*args, **kwargs) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/txt2img.py”, line 49, in txt2img processed = process_images(p) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py”, line 430, in process_images res = process_images_inner(p) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py”, line 531, in process_images_inner samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py”, line 664, in sample samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers.py”, line 507, in sample samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers.py”, line 422, in launch_sampling return func() File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers.py”, line 507, in <lambda> samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ File “/usr/local/lib/python3.8/dist-packages/torch/autograd/grad_mode.py”, line 27, in decorate_context return func(*args, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/sampling.py”, line 594, in sample_dpmpp_2m denoised = model(x, sigmas[i] * s_in, **extra_args) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers.py”, line 315, in forward x_out = self.inner_model(x_in, sigma_in, cond={“c_crossattn”: [cond_in], “c_concat”: [image_cond_in]}) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py”, line 112, in forward eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py”, line 138, in get_eps return self.inner_model.apply_model(*args, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/ldm/models/diffusion/ddpm.py”, line 858, in apply_model x_recon = self.model(x_noisy, t, **cond) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/ldm/models/diffusion/ddpm.py”, line 1329, in forward out = self.diffusion_model(x, t, context=cc) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/diffusionmodules/openaimodel.py”, line 776, in forward h = module(h, emb, context) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/diffusionmodules/openaimodel.py”, line 84, in forward x = layer(x, context) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/attention.py”, line 334, in forward x = block(x, context=context[i]) File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_checkpoint.py”, line 4, in BasicTransformerBlock_forward return checkpoint(self._forward, x, context) File “/usr/local/lib/python3.8/dist-packages/torch/utils/checkpoint.py”, line 249, in checkpoint return CheckpointFunction.apply(function, preserve, *args) File “/usr/local/lib/python3.8/dist-packages/torch/utils/checkpoint.py”, line 107, in forward outputs = run_function(*args) File “/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/attention.py”, line 272, in _forward x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x File “/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py”, line 1190, in _call_impl return forward_call(*input, **kwargs) File “/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_optimizations.py”, line 227, in xformers_attention_forward out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) File “/usr/local/lib/python3.8/dist-packages/xformers/ops/memory_efficient_attention.py”, line 967, in memory_efficient_attention return op.forward_no_grad( File “/usr/local/lib/python3.8/dist-packages/xformers/ops/memory_efficient_attention.py”, line 343, in forward_no_grad return cls.FORWARD_OPERATOR( File “/usr/local/lib/python3.8/dist-packages/xformers/ops/common.py”, line 11, in no_such_operator raise RuntimeError( RuntimeError: No such operator xformers::efficient_attention_forward_cutlass - did you forget to build xformers with python setup.py develop?

Issue Analytics

  • State:open
  • Created 9 months ago
  • Reactions:11
  • Comments:54 (7 by maintainers)

github_iconTop GitHub Comments

6reactions
TheLastBencommented, Dec 7, 2022

fixed (for the T4 at least), re-run the requirements cell

3reactions
brian6091commented, Dec 8, 2022

I’ve put the xformers wheels compiled by facebookresearch here:

https://github.com/brian6091/xformers-wheels/releases

This works on Google Colab for Tesla T4 (free) and A100 (premium).

Drop this in whatever cell you’re running the xformers install:

!pip install https://github.com/brian6091/xformers-wheels/releases/download/0.0.15.dev0%2B4c06c79/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl

Read more comments on GitHub >

github_iconTop Results From Across the Web

Could not run xformers::efficient_attention_forward_cutlass
Could not run xformers::efficient_attention_forward_cutlass #2073 ... diffusion\ldm\modules\attention.py", line 258, in forward x = block(x, ...
Read more >
Vision Xformers: Efficient Attention for Image Classification
The attention mechanism of transformers scales quadratically with the length of the input sequence, and unrolled images have long sequence ...
Read more >
Dynamic Fine-grained Structured Sparse Attention Mechanism
This paper aims at improving the computational efficiency of the attention mechanism by leveraging the specific sparse pattern supported by sparse tensor ...
Read more >
CUTLASS: Fast Linear Algebra in CUDA C++
Efficient Matrix Multiplication on GPUs. GEMM computes C = alpha A * B + beta C, where A, B, and C are matrices....
Read more >
A Case Study on Optimizing Transformers - MLSys Proceedings
Despite this, existing implementations do not efficiently utilize GPUs. ... In forward propagation, every fused operator outperforms. PyTorch's.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found