question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

RuntimeError: cuda runtime error (710) : device-side assert triggered at /pytorch/aten/src/THC/THCReduceAll.cuh:327

See original GitHub issue

from simpletransformers.classification import ClassificationModel model = ClassificationModel(‘xlnet’,‘./xlnetpytorch’,num_labels=536, args={“output_dir”: “/content/drive/My Drive/xlnet”,“save_steps”: 0,‘reprocess_input_data’: True}) model.train_model(train)

Error:- /usr/local/lib/python3.6/dist-packages/transformers/modeling_xlnet.py in forward(self, input_ids, attention_mask, mems, perm_mask, target_mapping, token_type_ids, input_mask, head_mask, inputs_embeds, use_cache, output_attentions, output_hidden_states) 892 # 1 indicates not in the same segment [qlen x klen x bsz] 893 seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() –> 894 seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float) 895 else: 896 seg_mat = None

RuntimeError: cuda runtime error (710) : device-side assert triggered at /pytorch/aten/src/THC/THCReduceAll.cuh:327

Also the number of classes in the model is also 536. Here is the config file for the model :- { “attn_type”: “bi”, “bi_data”: false, “bos_token_id”: 1, “clamp_len”: -1, “d_head”: 32, “d_inner”: 1024, “d_model”: 256, “dropout”: 0.1, “end_n_top”: 5, “eos_token_id”: 2, “ff_activation”: “relu”, “id2label”: { “0”: “LABEL_0”, “1”: “LABEL_1”, “2”: “LABEL_2”, “3”: “LABEL_3”, “4”: “LABEL_4”, “5”: “LABEL_5”, “6”: “LABEL_6”, “7”: “LABEL_7”, “8”: “LABEL_8”, “9”: “LABEL_9”, “10”: “LABEL_10”, “11”: “LABEL_11”, “12”: “LABEL_12”, “13”: “LABEL_13”, “14”: “LABEL_14”, “15”: “LABEL_15”, “16”: “LABEL_16”, “17”: “LABEL_17”, “18”: “LABEL_18”, “19”: “LABEL_19”, “20”: “LABEL_20”, “21”: “LABEL_21”, “22”: “LABEL_22”, “23”: “LABEL_23”, “24”: “LABEL_24”, “25”: “LABEL_25”, “26”: “LABEL_26”, “27”: “LABEL_27”, “28”: “LABEL_28”, “29”: “LABEL_29”, “30”: “LABEL_30”, “31”: “LABEL_31”, “32”: “LABEL_32”, “33”: “LABEL_33”, “34”: “LABEL_34”, “35”: “LABEL_35”, “36”: “LABEL_36”, “37”: “LABEL_37”, “38”: “LABEL_38”, “39”: “LABEL_39”, “40”: “LABEL_40”, “41”: “LABEL_41”, “42”: “LABEL_42”, “43”: “LABEL_43”, “44”: “LABEL_44”, “45”: “LABEL_45”, “46”: “LABEL_46”, “47”: “LABEL_47”, “48”: “LABEL_48”, “49”: “LABEL_49”, “50”: “LABEL_50”, “51”: “LABEL_51”, “52”: “LABEL_52”, “53”: “LABEL_53”, “54”: “LABEL_54”, “55”: “LABEL_55”, “56”: “LABEL_56”, “57”: “LABEL_57”, “58”: “LABEL_58”, “59”: “LABEL_59”, “60”: “LABEL_60”, “61”: “LABEL_61”, “62”: “LABEL_62”, “63”: “LABEL_63”, “64”: “LABEL_64”, “65”: “LABEL_65”, “66”: “LABEL_66”, “67”: “LABEL_67”, “68”: “LABEL_68”, “69”: “LABEL_69”, “70”: “LABEL_70”, “71”: “LABEL_71”, “72”: “LABEL_72”, “73”: “LABEL_73”, “74”: “LABEL_74”, “75”: “LABEL_75”, “76”: “LABEL_76”, “77”: “LABEL_77”, “78”: “LABEL_78”, “79”: “LABEL_79”, “80”: “LABEL_80”, “81”: “LABEL_81”, “82”: “LABEL_82”, “83”: “LABEL_83”, “84”: “LABEL_84”, “85”: “LABEL_85”, “86”: “LABEL_86”, “87”: “LABEL_87”, “88”: “LABEL_88”, “89”: “LABEL_89”, “90”: “LABEL_90”, “91”: “LABEL_91”, “92”: “LABEL_92”, “93”: “LABEL_93”, “94”: “LABEL_94”, “95”: “LABEL_95”, “96”: “LABEL_96”, “97”: “LABEL_97”, “98”: “LABEL_98”, “99”: “LABEL_99”, “100”: “LABEL_100”, “101”: “LABEL_101”, “102”: “LABEL_102”, “103”: “LABEL_103”, “104”: “LABEL_104”, “105”: “LABEL_105”, “106”: “LABEL_106”, “107”: “LABEL_107”, “108”: “LABEL_108”, “109”: “LABEL_109”, “110”: “LABEL_110”, “111”: “LABEL_111”, “112”: “LABEL_112”, “113”: “LABEL_113”, “114”: “LABEL_114”, “115”: “LABEL_115”, “116”: “LABEL_116”, “117”: “LABEL_117”, “118”: “LABEL_118”, “119”: “LABEL_119”, “120”: “LABEL_120”, “121”: “LABEL_121”, “122”: “LABEL_122”, “123”: “LABEL_123”, “124”: “LABEL_124”, “125”: “LABEL_125”, “126”: “LABEL_126”, “127”: “LABEL_127”, “128”: “LABEL_128”, “129”: “LABEL_129”, “130”: “LABEL_130”, “131”: “LABEL_131”, “132”: “LABEL_132”, “133”: “LABEL_133”, “134”: “LABEL_134”, “135”: “LABEL_135”, “136”: “LABEL_136”, “137”: “LABEL_137”, “138”: “LABEL_138”, “139”: “LABEL_139”, “140”: “LABEL_140”, “141”: “LABEL_141”, “142”: “LABEL_142”, “143”: “LABEL_143”, “144”: “LABEL_144”, “145”: “LABEL_145”, “146”: “LABEL_146”, “147”: “LABEL_147”, “148”: “LABEL_148”, “149”: “LABEL_149”, “150”: “LABEL_150”, “151”: “LABEL_151”, “152”: “LABEL_152”, “153”: “LABEL_153”, “154”: “LABEL_154”, “155”: “LABEL_155”, “156”: “LABEL_156”, “157”: “LABEL_157”, “158”: “LABEL_158”, “159”: “LABEL_159”, “160”: “LABEL_160”, “161”: “LABEL_161”, “162”: “LABEL_162”, “163”: “LABEL_163”, “164”: “LABEL_164”, “165”: “LABEL_165”, “166”: “LABEL_166”, “167”: “LABEL_167”, “168”: “LABEL_168”, “169”: “LABEL_169”, “170”: “LABEL_170”, “171”: “LABEL_171”, “172”: “LABEL_172”, “173”: “LABEL_173”, “174”: “LABEL_174”, “175”: “LABEL_175”, “176”: “LABEL_176”, “177”: “LABEL_177”, “178”: “LABEL_178”, “179”: “LABEL_179”, “180”: “LABEL_180”, “181”: “LABEL_181”, “182”: “LABEL_182”, “183”: “LABEL_183”, “184”: “LABEL_184”, “185”: “LABEL_185”, “186”: “LABEL_186”, “187”: “LABEL_187”, “188”: “LABEL_188”, “189”: “LABEL_189”, “190”: “LABEL_190”, “191”: “LABEL_191”, “192”: “LABEL_192”, “193”: “LABEL_193”, “194”: “LABEL_194”, “195”: “LABEL_195”, “196”: “LABEL_196”, “197”: “LABEL_197”, “198”: “LABEL_198”, “199”: “LABEL_199”, “200”: “LABEL_200”, “201”: “LABEL_201”, “202”: “LABEL_202”, “203”: “LABEL_203”, “204”: “LABEL_204”, “205”: “LABEL_205”, “206”: “LABEL_206”, “207”: “LABEL_207”, “208”: “LABEL_208”, “209”: “LABEL_209”, “210”: “LABEL_210”, “211”: “LABEL_211”, “212”: “LABEL_212”, “213”: “LABEL_213”, “214”: “LABEL_214”, “215”: “LABEL_215”, “216”: “LABEL_216”, “217”: “LABEL_217”, “218”: “LABEL_218”, “219”: “LABEL_219”, “220”: “LABEL_220”, “221”: “LABEL_221”, “222”: “LABEL_222”, “223”: “LABEL_223”, “224”: “LABEL_224”, “225”: “LABEL_225”, “226”: “LABEL_226”, “227”: “LABEL_227”, “228”: “LABEL_228”, “229”: “LABEL_229”, “230”: “LABEL_230”, “231”: “LABEL_231”, “232”: “LABEL_232”, “233”: “LABEL_233”, “234”: “LABEL_234”, “235”: “LABEL_235”, “236”: “LABEL_236”, “237”: “LABEL_237”, “238”: “LABEL_238”, “239”: “LABEL_239”, “240”: “LABEL_240”, “241”: “LABEL_241”, “242”: “LABEL_242”, “243”: “LABEL_243”, “244”: “LABEL_244”, “245”: “LABEL_245”, “246”: “LABEL_246”, “247”: “LABEL_247”, “248”: “LABEL_248”, “249”: “LABEL_249”, “250”: “LABEL_250”, “251”: “LABEL_251”, “252”: “LABEL_252”, “253”: “LABEL_253”, “254”: “LABEL_254”, “255”: “LABEL_255”, “256”: “LABEL_256”, “257”: “LABEL_257”, “258”: “LABEL_258”, “259”: “LABEL_259”, “260”: “LABEL_260”, “261”: “LABEL_261”, “262”: “LABEL_262”, “263”: “LABEL_263”, “264”: “LABEL_264”, “265”: “LABEL_265”, “266”: “LABEL_266”, “267”: “LABEL_267”, “268”: “LABEL_268”, “269”: “LABEL_269”, “270”: “LABEL_270”, “271”: “LABEL_271”, “272”: “LABEL_272”, “273”: “LABEL_273”, “274”: “LABEL_274”, “275”: “LABEL_275”, “276”: “LABEL_276”, “277”: “LABEL_277”, “278”: “LABEL_278”, “279”: “LABEL_279”, “280”: “LABEL_280”, “281”: “LABEL_281”, “282”: “LABEL_282”, “283”: “LABEL_283”, “284”: “LABEL_284”, “285”: “LABEL_285”, “286”: “LABEL_286”, “287”: “LABEL_287”, “288”: “LABEL_288”, “289”: “LABEL_289”, “290”: “LABEL_290”, “291”: “LABEL_291”, “292”: “LABEL_292”, “293”: “LABEL_293”, “294”: “LABEL_294”, “295”: “LABEL_295”, “296”: “LABEL_296”, “297”: “LABEL_297”, “298”: “LABEL_298”, “299”: “LABEL_299”, “300”: “LABEL_300”, “301”: “LABEL_301”, “302”: “LABEL_302”, “303”: “LABEL_303”, “304”: “LABEL_304”, “305”: “LABEL_305”, “306”: “LABEL_306”, “307”: “LABEL_307”, “308”: “LABEL_308”, “309”: “LABEL_309”, “310”: “LABEL_310”, “311”: “LABEL_311”, “312”: “LABEL_312”, “313”: “LABEL_313”, “314”: “LABEL_314”, “315”: “LABEL_315”, “316”: “LABEL_316”, “317”: “LABEL_317”, “318”: “LABEL_318”, “319”: “LABEL_319”, “320”: “LABEL_320”, “321”: “LABEL_321”, “322”: “LABEL_322”, “323”: “LABEL_323”, “324”: “LABEL_324”, “325”: “LABEL_325”, “326”: “LABEL_326”, “327”: “LABEL_327”, “328”: “LABEL_328”, “329”: “LABEL_329”, “330”: “LABEL_330”, “331”: “LABEL_331”, “332”: “LABEL_332”, “333”: “LABEL_333”, “334”: “LABEL_334”, “335”: “LABEL_335”, “336”: “LABEL_336”, “337”: “LABEL_337”, “338”: “LABEL_338”, “339”: “LABEL_339”, “340”: “LABEL_340”, “341”: “LABEL_341”, “342”: “LABEL_342”, “343”: “LABEL_343”, “344”: “LABEL_344”, “345”: “LABEL_345”, “346”: “LABEL_346”, “347”: “LABEL_347”, “348”: “LABEL_348”, “349”: “LABEL_349”, “350”: “LABEL_350”, “351”: “LABEL_351”, “352”: “LABEL_352”, “353”: “LABEL_353”, “354”: “LABEL_354”, “355”: “LABEL_355”, “356”: “LABEL_356”, “357”: “LABEL_357”, “358”: “LABEL_358”, “359”: “LABEL_359”, “360”: “LABEL_360”, “361”: “LABEL_361”, “362”: “LABEL_362”, “363”: “LABEL_363”, “364”: “LABEL_364”, “365”: “LABEL_365”, “366”: “LABEL_366”, “367”: “LABEL_367”, “368”: “LABEL_368”, “369”: “LABEL_369”, “370”: “LABEL_370”, “371”: “LABEL_371”, “372”: “LABEL_372”, “373”: “LABEL_373”, “374”: “LABEL_374”, “375”: “LABEL_375”, “376”: “LABEL_376”, “377”: “LABEL_377”, “378”: “LABEL_378”, “379”: “LABEL_379”, “380”: “LABEL_380”, “381”: “LABEL_381”, “382”: “LABEL_382”, “383”: “LABEL_383”, “384”: “LABEL_384”, “385”: “LABEL_385”, “386”: “LABEL_386”, “387”: “LABEL_387”, “388”: “LABEL_388”, “389”: “LABEL_389”, “390”: “LABEL_390”, “391”: “LABEL_391”, “392”: “LABEL_392”, “393”: “LABEL_393”, “394”: “LABEL_394”, “395”: “LABEL_395”, “396”: “LABEL_396”, “397”: “LABEL_397”, “398”: “LABEL_398”, “399”: “LABEL_399”, “400”: “LABEL_400”, “401”: “LABEL_401”, “402”: “LABEL_402”, “403”: “LABEL_403”, “404”: “LABEL_404”, “405”: “LABEL_405”, “406”: “LABEL_406”, “407”: “LABEL_407”, “408”: “LABEL_408”, “409”: “LABEL_409”, “410”: “LABEL_410”, “411”: “LABEL_411”, “412”: “LABEL_412”, “413”: “LABEL_413”, “414”: “LABEL_414”, “415”: “LABEL_415”, “416”: “LABEL_416”, “417”: “LABEL_417”, “418”: “LABEL_418”, “419”: “LABEL_419”, “420”: “LABEL_420”, “421”: “LABEL_421”, “422”: “LABEL_422”, “423”: “LABEL_423”, “424”: “LABEL_424”, “425”: “LABEL_425”, “426”: “LABEL_426”, “427”: “LABEL_427”, “428”: “LABEL_428”, “429”: “LABEL_429”, “430”: “LABEL_430”, “431”: “LABEL_431”, “432”: “LABEL_432”, “433”: “LABEL_433”, “434”: “LABEL_434”, “435”: “LABEL_435”, “436”: “LABEL_436”, “437”: “LABEL_437”, “438”: “LABEL_438”, “439”: “LABEL_439”, “440”: “LABEL_440”, “441”: “LABEL_441”, “442”: “LABEL_442”, “443”: “LABEL_443”, “444”: “LABEL_444”, “445”: “LABEL_445”, “446”: “LABEL_446”, “447”: “LABEL_447”, “448”: “LABEL_448”, “449”: “LABEL_449”, “450”: “LABEL_450”, “451”: “LABEL_451”, “452”: “LABEL_452”, “453”: “LABEL_453”, “454”: “LABEL_454”, “455”: “LABEL_455”, “456”: “LABEL_456”, “457”: “LABEL_457”, “458”: “LABEL_458”, “459”: “LABEL_459”, “460”: “LABEL_460”, “461”: “LABEL_461”, “462”: “LABEL_462”, “463”: “LABEL_463”, “464”: “LABEL_464”, “465”: “LABEL_465”, “466”: “LABEL_466”, “467”: “LABEL_467”, “468”: “LABEL_468”, “469”: “LABEL_469”, “470”: “LABEL_470”, “471”: “LABEL_471”, “472”: “LABEL_472”, “473”: “LABEL_473”, “474”: “LABEL_474”, “475”: “LABEL_475”, “476”: “LABEL_476”, “477”: “LABEL_477”, “478”: “LABEL_478”, “479”: “LABEL_479”, “480”: “LABEL_480”, “481”: “LABEL_481”, “482”: “LABEL_482”, “483”: “LABEL_483”, “484”: “LABEL_484”, “485”: “LABEL_485”, “486”: “LABEL_486”, “487”: “LABEL_487”, “488”: “LABEL_488”, “489”: “LABEL_489”, “490”: “LABEL_490”, “491”: “LABEL_491”, “492”: “LABEL_492”, “493”: “LABEL_493”, “494”: “LABEL_494”, “495”: “LABEL_495”, “496”: “LABEL_496”, “497”: “LABEL_497”, “498”: “LABEL_498”, “499”: “LABEL_499”, “500”: “LABEL_500”, “501”: “LABEL_501”, “502”: “LABEL_502”, “503”: “LABEL_503”, “504”: “LABEL_504”, “505”: “LABEL_505”, “506”: “LABEL_506”, “507”: “LABEL_507”, “508”: “LABEL_508”, “509”: “LABEL_509”, “510”: “LABEL_510”, “511”: “LABEL_511”, “512”: “LABEL_512”, “513”: “LABEL_513”, “514”: “LABEL_514”, “515”: “LABEL_515”, “516”: “LABEL_516”, “517”: “LABEL_517”, “518”: “LABEL_518”, “519”: “LABEL_519”, “520”: “LABEL_520”, “521”: “LABEL_521”, “522”: “LABEL_522”, “523”: “LABEL_523”, “524”: “LABEL_524”, “525”: “LABEL_525”, “526”: “LABEL_526”, “527”: “LABEL_527”, “528”: “LABEL_528”, “529”: “LABEL_529”, “530”: “LABEL_530”, “531”: “LABEL_531”, “532”: “LABEL_532”, “533”: “LABEL_533”, “534”: “LABEL_534”, “535”: “LABEL_535” }, “initializer_range”: 0.02, “label2id”: { “LABEL_0”: 0, “LABEL_1”: 1, “LABEL_10”: 10, “LABEL_100”: 100, “LABEL_101”: 101, “LABEL_102”: 102, “LABEL_103”: 103, “LABEL_104”: 104, “LABEL_105”: 105, “LABEL_106”: 106, “LABEL_107”: 107, “LABEL_108”: 108, “LABEL_109”: 109, “LABEL_11”: 11, “LABEL_110”: 110, “LABEL_111”: 111, “LABEL_112”: 112, “LABEL_113”: 113, “LABEL_114”: 114, “LABEL_115”: 115, “LABEL_116”: 116, “LABEL_117”: 117, “LABEL_118”: 118, “LABEL_119”: 119, “LABEL_12”: 12, “LABEL_120”: 120, “LABEL_121”: 121, “LABEL_122”: 122, “LABEL_123”: 123, “LABEL_124”: 124, “LABEL_125”: 125, “LABEL_126”: 126, “LABEL_127”: 127, “LABEL_128”: 128, “LABEL_129”: 129, “LABEL_13”: 13, “LABEL_130”: 130, “LABEL_131”: 131, “LABEL_132”: 132, “LABEL_133”: 133, “LABEL_134”: 134, “LABEL_135”: 135, “LABEL_136”: 136, “LABEL_137”: 137, “LABEL_138”: 138, “LABEL_139”: 139, “LABEL_14”: 14, “LABEL_140”: 140, “LABEL_141”: 141, “LABEL_142”: 142, “LABEL_143”: 143, “LABEL_144”: 144, “LABEL_145”: 145, “LABEL_146”: 146, “LABEL_147”: 147, “LABEL_148”: 148, “LABEL_149”: 149, “LABEL_15”: 15, “LABEL_150”: 150, “LABEL_151”: 151, “LABEL_152”: 152, “LABEL_153”: 153, “LABEL_154”: 154, “LABEL_155”: 155, “LABEL_156”: 156, “LABEL_157”: 157, “LABEL_158”: 158, “LABEL_159”: 159, “LABEL_16”: 16, “LABEL_160”: 160, “LABEL_161”: 161, “LABEL_162”: 162, “LABEL_163”: 163, “LABEL_164”: 164, “LABEL_165”: 165, “LABEL_166”: 166, “LABEL_167”: 167, “LABEL_168”: 168, “LABEL_169”: 169, “LABEL_17”: 17, “LABEL_170”: 170, “LABEL_171”: 171, “LABEL_172”: 172, “LABEL_173”: 173, “LABEL_174”: 174, “LABEL_175”: 175, “LABEL_176”: 176, “LABEL_177”: 177, “LABEL_178”: 178, “LABEL_179”: 179, “LABEL_18”: 18, “LABEL_180”: 180, “LABEL_181”: 181, “LABEL_182”: 182, “LABEL_183”: 183, “LABEL_184”: 184, “LABEL_185”: 185, “LABEL_186”: 186, “LABEL_187”: 187, “LABEL_188”: 188, “LABEL_189”: 189, “LABEL_19”: 19, “LABEL_190”: 190, “LABEL_191”: 191, “LABEL_192”: 192, “LABEL_193”: 193, “LABEL_194”: 194, “LABEL_195”: 195, “LABEL_196”: 196, “LABEL_197”: 197, “LABEL_198”: 198, “LABEL_199”: 199, “LABEL_2”: 2, “LABEL_20”: 20, “LABEL_200”: 200, “LABEL_201”: 201, “LABEL_202”: 202, “LABEL_203”: 203, “LABEL_204”: 204, “LABEL_205”: 205, “LABEL_206”: 206, “LABEL_207”: 207, “LABEL_208”: 208, “LABEL_209”: 209, “LABEL_21”: 21, “LABEL_210”: 210, “LABEL_211”: 211, “LABEL_212”: 212, “LABEL_213”: 213, “LABEL_214”: 214, “LABEL_215”: 215, “LABEL_216”: 216, “LABEL_217”: 217, “LABEL_218”: 218, “LABEL_219”: 219, “LABEL_22”: 22, “LABEL_220”: 220, “LABEL_221”: 221, “LABEL_222”: 222, “LABEL_223”: 223, “LABEL_224”: 224, “LABEL_225”: 225, “LABEL_226”: 226, “LABEL_227”: 227, “LABEL_228”: 228, “LABEL_229”: 229, “LABEL_23”: 23, “LABEL_230”: 230, “LABEL_231”: 231, “LABEL_232”: 232, “LABEL_233”: 233, “LABEL_234”: 234, “LABEL_235”: 235, “LABEL_236”: 236, “LABEL_237”: 237, “LABEL_238”: 238, “LABEL_239”: 239, “LABEL_24”: 24, “LABEL_240”: 240, “LABEL_241”: 241, “LABEL_242”: 242, “LABEL_243”: 243, “LABEL_244”: 244, “LABEL_245”: 245, “LABEL_246”: 246, “LABEL_247”: 247, “LABEL_248”: 248, “LABEL_249”: 249, “LABEL_25”: 25, “LABEL_250”: 250, “LABEL_251”: 251, “LABEL_252”: 252, “LABEL_253”: 253, “LABEL_254”: 254, “LABEL_255”: 255, “LABEL_256”: 256, “LABEL_257”: 257, “LABEL_258”: 258, “LABEL_259”: 259, “LABEL_26”: 26, “LABEL_260”: 260, “LABEL_261”: 261, “LABEL_262”: 262, “LABEL_263”: 263, “LABEL_264”: 264, “LABEL_265”: 265, “LABEL_266”: 266, “LABEL_267”: 267, “LABEL_268”: 268, “LABEL_269”: 269, “LABEL_27”: 27, “LABEL_270”: 270, “LABEL_271”: 271, “LABEL_272”: 272, “LABEL_273”: 273, “LABEL_274”: 274, “LABEL_275”: 275, “LABEL_276”: 276, “LABEL_277”: 277, “LABEL_278”: 278, “LABEL_279”: 279, “LABEL_28”: 28, “LABEL_280”: 280, “LABEL_281”: 281, “LABEL_282”: 282, “LABEL_283”: 283, “LABEL_284”: 284, “LABEL_285”: 285, “LABEL_286”: 286, “LABEL_287”: 287, “LABEL_288”: 288, “LABEL_289”: 289, “LABEL_29”: 29, “LABEL_290”: 290, “LABEL_291”: 291, “LABEL_292”: 292, “LABEL_293”: 293, “LABEL_294”: 294, “LABEL_295”: 295, “LABEL_296”: 296, “LABEL_297”: 297, “LABEL_298”: 298, “LABEL_299”: 299, “LABEL_3”: 3, “LABEL_30”: 30, “LABEL_300”: 300, “LABEL_301”: 301, “LABEL_302”: 302, “LABEL_303”: 303, “LABEL_304”: 304, “LABEL_305”: 305, “LABEL_306”: 306, “LABEL_307”: 307, “LABEL_308”: 308, “LABEL_309”: 309, “LABEL_31”: 31, “LABEL_310”: 310, “LABEL_311”: 311, “LABEL_312”: 312, “LABEL_313”: 313, “LABEL_314”: 314, “LABEL_315”: 315, “LABEL_316”: 316, “LABEL_317”: 317, “LABEL_318”: 318, “LABEL_319”: 319, “LABEL_32”: 32, “LABEL_320”: 320, “LABEL_321”: 321, “LABEL_322”: 322, “LABEL_323”: 323, “LABEL_324”: 324, “LABEL_325”: 325, “LABEL_326”: 326, “LABEL_327”: 327, “LABEL_328”: 328, “LABEL_329”: 329, “LABEL_33”: 33, “LABEL_330”: 330, “LABEL_331”: 331, “LABEL_332”: 332, “LABEL_333”: 333, “LABEL_334”: 334, “LABEL_335”: 335, “LABEL_336”: 336, “LABEL_337”: 337, “LABEL_338”: 338, “LABEL_339”: 339, “LABEL_34”: 34, “LABEL_340”: 340, “LABEL_341”: 341, “LABEL_342”: 342, “LABEL_343”: 343, “LABEL_344”: 344, “LABEL_345”: 345, “LABEL_346”: 346, “LABEL_347”: 347, “LABEL_348”: 348, “LABEL_349”: 349, “LABEL_35”: 35, “LABEL_350”: 350, “LABEL_351”: 351, “LABEL_352”: 352, “LABEL_353”: 353, “LABEL_354”: 354, “LABEL_355”: 355, “LABEL_356”: 356, “LABEL_357”: 357, “LABEL_358”: 358, “LABEL_359”: 359, “LABEL_36”: 36, “LABEL_360”: 360, “LABEL_361”: 361, “LABEL_362”: 362, “LABEL_363”: 363, “LABEL_364”: 364, “LABEL_365”: 365, “LABEL_366”: 366, “LABEL_367”: 367, “LABEL_368”: 368, “LABEL_369”: 369, “LABEL_37”: 37, “LABEL_370”: 370, “LABEL_371”: 371, “LABEL_372”: 372, “LABEL_373”: 373, “LABEL_374”: 374, “LABEL_375”: 375, “LABEL_376”: 376, “LABEL_377”: 377, “LABEL_378”: 378, “LABEL_379”: 379, “LABEL_38”: 38, “LABEL_380”: 380, “LABEL_381”: 381, “LABEL_382”: 382, “LABEL_383”: 383, “LABEL_384”: 384, “LABEL_385”: 385, “LABEL_386”: 386, “LABEL_387”: 387, “LABEL_388”: 388, “LABEL_389”: 389, “LABEL_39”: 39, “LABEL_390”: 390, “LABEL_391”: 391, “LABEL_392”: 392, “LABEL_393”: 393, “LABEL_394”: 394, “LABEL_395”: 395, “LABEL_396”: 396, “LABEL_397”: 397, “LABEL_398”: 398, “LABEL_399”: 399, “LABEL_4”: 4, “LABEL_40”: 40, “LABEL_400”: 400, “LABEL_401”: 401, “LABEL_402”: 402, “LABEL_403”: 403, “LABEL_404”: 404, “LABEL_405”: 405, “LABEL_406”: 406, “LABEL_407”: 407, “LABEL_408”: 408, “LABEL_409”: 409, “LABEL_41”: 41, “LABEL_410”: 410, “LABEL_411”: 411, “LABEL_412”: 412, “LABEL_413”: 413, “LABEL_414”: 414, “LABEL_415”: 415, “LABEL_416”: 416, “LABEL_417”: 417, “LABEL_418”: 418, “LABEL_419”: 419, “LABEL_42”: 42, “LABEL_420”: 420, “LABEL_421”: 421, “LABEL_422”: 422, “LABEL_423”: 423, “LABEL_424”: 424, “LABEL_425”: 425, “LABEL_426”: 426, “LABEL_427”: 427, “LABEL_428”: 428, “LABEL_429”: 429, “LABEL_43”: 43, “LABEL_430”: 430, “LABEL_431”: 431, “LABEL_432”: 432, “LABEL_433”: 433, “LABEL_434”: 434, “LABEL_435”: 435, “LABEL_436”: 436, “LABEL_437”: 437, “LABEL_438”: 438, “LABEL_439”: 439, “LABEL_44”: 44, “LABEL_440”: 440, “LABEL_441”: 441, “LABEL_442”: 442, “LABEL_443”: 443, “LABEL_444”: 444, “LABEL_445”: 445, “LABEL_446”: 446, “LABEL_447”: 447, “LABEL_448”: 448, “LABEL_449”: 449, “LABEL_45”: 45, “LABEL_450”: 450, “LABEL_451”: 451, “LABEL_452”: 452, “LABEL_453”: 453, “LABEL_454”: 454, “LABEL_455”: 455, “LABEL_456”: 456, “LABEL_457”: 457, “LABEL_458”: 458, “LABEL_459”: 459, “LABEL_46”: 46, “LABEL_460”: 460, “LABEL_461”: 461, “LABEL_462”: 462, “LABEL_463”: 463, “LABEL_464”: 464, “LABEL_465”: 465, “LABEL_466”: 466, “LABEL_467”: 467, “LABEL_468”: 468, “LABEL_469”: 469, “LABEL_47”: 47, “LABEL_470”: 470, “LABEL_471”: 471, “LABEL_472”: 472, “LABEL_473”: 473, “LABEL_474”: 474, “LABEL_475”: 475, “LABEL_476”: 476, “LABEL_477”: 477, “LABEL_478”: 478, “LABEL_479”: 479, “LABEL_48”: 48, “LABEL_480”: 480, “LABEL_481”: 481, “LABEL_482”: 482, “LABEL_483”: 483, “LABEL_484”: 484, “LABEL_485”: 485, “LABEL_486”: 486, “LABEL_487”: 487, “LABEL_488”: 488, “LABEL_489”: 489, “LABEL_49”: 49, “LABEL_490”: 490, “LABEL_491”: 491, “LABEL_492”: 492, “LABEL_493”: 493, “LABEL_494”: 494, “LABEL_495”: 495, “LABEL_496”: 496, “LABEL_497”: 497, “LABEL_498”: 498, “LABEL_499”: 499, “LABEL_5”: 5, “LABEL_50”: 50, “LABEL_500”: 500, “LABEL_501”: 501, “LABEL_502”: 502, “LABEL_503”: 503, “LABEL_504”: 504, “LABEL_505”: 505, “LABEL_506”: 506, “LABEL_507”: 507, “LABEL_508”: 508, “LABEL_509”: 509, “LABEL_51”: 51, “LABEL_510”: 510, “LABEL_511”: 511, “LABEL_512”: 512, “LABEL_513”: 513, “LABEL_514”: 514, “LABEL_515”: 515, “LABEL_516”: 516, “LABEL_517”: 517, “LABEL_518”: 518, “LABEL_519”: 519, “LABEL_52”: 52, “LABEL_520”: 520, “LABEL_521”: 521, “LABEL_522”: 522, “LABEL_523”: 523, “LABEL_524”: 524, “LABEL_525”: 525, “LABEL_526”: 526, “LABEL_527”: 527, “LABEL_528”: 528, “LABEL_529”: 529, “LABEL_53”: 53, “LABEL_530”: 530, “LABEL_531”: 531, “LABEL_532”: 532, “LABEL_533”: 533, “LABEL_534”: 534, “LABEL_535”: 535, “LABEL_54”: 54, “LABEL_55”: 55, “LABEL_56”: 56, “LABEL_57”: 57, “LABEL_58”: 58, “LABEL_59”: 59, “LABEL_6”: 6, “LABEL_60”: 60, “LABEL_61”: 61, “LABEL_62”: 62, “LABEL_63”: 63, “LABEL_64”: 64, “LABEL_65”: 65, “LABEL_66”: 66, “LABEL_67”: 67, “LABEL_68”: 68, “LABEL_69”: 69, “LABEL_7”: 7, “LABEL_70”: 70, “LABEL_71”: 71, “LABEL_72”: 72, “LABEL_73”: 73, “LABEL_74”: 74, “LABEL_75”: 75, “LABEL_76”: 76, “LABEL_77”: 77, “LABEL_78”: 78, “LABEL_79”: 79, “LABEL_8”: 8, “LABEL_80”: 80, “LABEL_81”: 81, “LABEL_82”: 82, “LABEL_83”: 83, “LABEL_84”: 84, “LABEL_85”: 85, “LABEL_86”: 86, “LABEL_87”: 87, “LABEL_88”: 88, “LABEL_89”: 89, “LABEL_9”: 9, “LABEL_90”: 90, “LABEL_91”: 91, “LABEL_92”: 92, “LABEL_93”: 93, “LABEL_94”: 94, “LABEL_95”: 95, “LABEL_96”: 96, “LABEL_97”: 97, “LABEL_98”: 98, “LABEL_99”: 99 }, “layer_norm_eps”: 1e-12, “mem_len”: null, “model_type”: “xlnet”, “n_head”: 8, “n_layer”: 6, “pad_token_id”: 5, “reuse_len”: null, “same_length”: false, “start_n_top”: 5, “summary_activation”: “tanh”, “summary_last_dropout”: 0.1, “summary_type”: “last”, “summary_use_proj”: true, “untie_r”: true, “vocab_size”: 32000 }

Please help. 😃

Issue Analytics

  • State:closed
  • Created 3 years ago
  • Comments:7 (2 by maintainers)

github_iconTop GitHub Comments

1reaction
Sagar1094commented, Jul 12, 2020

The spiece.model file was at fault, corrected it and everything ran fine. No issues with this amazing library.

0reactions
Sagar1094commented, Jul 8, 2020

The error with use_cuda=False is :-

The error comes with custom trained xlnet only have tried with pre trained xlnet-large-cased working fine.

100% 243852/243852 [10:52<00:00, 373.61it/s]

Epoch 1 of 1: 0% 0/1 [00:00<?, ?it/s] Running Epoch 0 of 1: 0% 0/30482 [00:00<?, ?it/s]


IndexError Traceback (most recent call last) <ipython-input-12-714ec37ce099> in <module>() ----> 1 model.train_model(train)

8 frames /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) 1722 # remove once script supports set_grad_enabled 1723 no_grad_embedding_renorm(weight, input, max_norm, norm_type) -> 1724 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 1725 1726

IndexError: index out of range in self

Read more comments on GitHub >

github_iconTop Results From Across the Web

RuntimeError: cuda runtime error (710) : device-side assert ...
What was your loss function? I got this error too. My problem was a multi-class classification and I was using a crossEntropy loss....
Read more >
cuda runtime error (710) : device-side assert triggered at ...
RuntimeError : cuda runtime error (710) : device-side assert triggered at /pytorch/aten/src/THC/THCReduceAll.cuh:327 #1.
Read more >
Cuda runtime error (710) : device-side assert triggered at - nlp
I got this output by running the python script with CUDA_LAUNCH_BLOCKING=1 . By increasing the value of my embedding to 380, the code...
Read more >
CUDA Error: Device-Side Assert Triggered: Solved | Built In
The code above will trigger a CUDA runtime error 59 if you are using a GPU. You can fix it by passing your...
Read more >
[Solved] RuntimeError: CUDA error: device-side assert triggered
cuda. device_count() is 1. This is a strange error message: RuntimeError: Attempting to deserialize object on CUDA device 3 but torch.
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found