there is not python3.4 with keras2.1.4 and tensorflow1.0.1 ; so , i install python3.5 with keras2.1.4 and tensorflow1.0.1
See original GitHub issuethere is not python3.4 with keras2.1.4 and tensorflow1.0.1 ; so , i install python3.5 with keras2.1.4 and tensorflow1.0.1
@TitanX:~$ conda search tensorflow
Loading channels: done
Name Version Build Channel
tensorflow 0.10.0rc0 np111py27_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 0.10.0rc0 np111py27_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
tensorflow 0.10.0rc0 np111py27_0 defaults
tensorflow 0.10.0rc0 np111py34_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 0.10.0rc0 np111py34_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
tensorflow 0.10.0rc0 np111py34_0 defaults
tensorflow 0.10.0rc0 np111py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 0.10.0rc0 np111py35_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
tensorflow 0.10.0rc0 np111py35_0 defaults
tensorflow 1.0.1 np112py27_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 1.0.1 np112py27_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
tensorflow 1.0.1 np112py27_0 defaults
tensorflow 1.0.1 np112py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 1.0.1 np112py35_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
tensorflow 1.0.1 np112py35_0 defaults
tensorflow 1.0.1 np112py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 1.0.1 np112py36_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
tensorflow 1.0.1 np112py36_0 defaults
tensorflow 1.1.0 np111py27_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tensorflow 1.1.0 np111py27_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/free
keras 2.1.2 py35_0 defaults
keras 2.1.2 py36_0 defaults
keras 2.1.3 py27_0 defaults
keras 2.1.3 py35_0 defaults
keras 2.1.3 py36_0 defaults
keras 2.1.4 py27_0 defaults
keras 2.1.4 py35_0 defaults
keras 2.1.4 py36_0 defaults
keras 2.1.5 py27_0 defaults
there is not python3.4 with keras2.1.4 and tensorflow1.0.1 ; so , i install python3.5 with keras2.1.4 and tensorflow1.0.1 . Then, happen follow error:
/home/anaconda2/envs/dronet/bin/python -u /home/pytest/dronet/rpg_public_dronet-master1/cnn.py --experiment_rootdir='./model/test_1' --train_dir='/home/datafile/dronet_data/collision_dataset/training' --val_dir='/home/datafile/dronet_data/collision_dataset/validation' --batch_size=16 --epochs=150 --log_rate=25
Using TensorFlow backend.
Found 63169 images belonging to 132 experiments.
Found 1035 images belonging to 3 experiments.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 200, 200, 1) 0
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 100, 100, 32) 832 input_1[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 49, 49, 32) 0 conv2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 49, 49, 32) 128 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 49, 49, 32) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 25, 25, 32) 9248 activation_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 25, 25, 32) 128 conv2d_2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 25, 25, 32) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 25, 25, 32) 1056 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 25, 25, 32) 9248 activation_2[0][0]
__________________________________________________________________________________________________
add_1 (Add) (None, 25, 25, 32) 0 conv2d_4[0][0]
conv2d_3[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 25, 25, 32) 128 add_1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 25, 25, 32) 0 batch_normalization_3[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 13, 13, 64) 18496 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 13, 13, 64) 256 conv2d_5[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 13, 13, 64) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 13, 13, 64) 2112 add_1[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 13, 13, 64) 36928 activation_4[0][0]
__________________________________________________________________________________________________
add_2 (Add) (None, 13, 13, 64) 0 conv2d_7[0][0]
conv2d_6[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 13, 13, 64) 256 add_2[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 13, 13, 64) 0 batch_normalization_5[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 7, 7, 128) 73856 activation_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 7, 7, 128) 512 conv2d_8[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 7, 7, 128) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 7, 7, 128) 8320 add_2[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 7, 7, 128) 147584 activation_6[0][0]
__________________________________________________________________________________________________
add_3 (Add) (None, 7, 7, 128) 0 conv2d_10[0][0]
conv2d_9[0][0]
__________________________________________________________________________________________________
flatten_1 (Flatten) (None, 6272) 0 add_3[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, 6272) 0 flatten_1[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 6272) 0 activation_7[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 1) 6273 dropout_1[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 1) 6273 dropout_1[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, 1) 0 dense_2[0][0]
==================================================================================================
Total params: 321,634
Trainable params: 320,930
Non-trainable params: 704
__________________________________________________________________________________________________
None
configure_output_dir: not storing the git diff, probably because you're not in a git repo
Logging data to ./model/test_1/log.txt
/home/anaconda2/envs/dronet/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:91: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Epoch 1/150
1.0
0.0
Traceback (most recent call last):
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/utils/data_utils.py", line 564, in get
inputs = self.queue.get(block=True).get()
File "/home/anaconda2/envs/dronet/lib/python3.5/multiprocessing/pool.py", line 644, in get
raise self._value
File "/home/anaconda2/envs/dronet/lib/python3.5/multiprocessing/pool.py", line 119, in worker
result = (True, func(*args, **kwds))
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/utils/data_utils.py", line 390, in get_index
return _SHARED_SEQUENCES[uid][i]
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/preprocessing/image.py", line 799, in __getitem__
return self._get_batches_of_transformed_samples(index_array)
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/preprocessing/image.py", line 845, in _get_batches_of_transformed_samples
raise NotImplementedError
NotImplementedError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/pytest/dronet/rpg_public_dronet-master1/cnn.py", line 176, in <module>
main(sys.argv)
File "/home/pytest/dronet/rpg_public_dronet-master1/cnn.py", line 172, in main
_main()
File "/home/pytest/dronet/rpg_public_dronet-master1/cnn.py", line 161, in _main
trainModel(train_generator, val_generator, model, initial_epoch)
File "/home/pytest/dronet/rpg_public_dronet-master1/cnn.py", line 89, in trainModel
initial_epoch=initial_epoch)
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/engine/training.py", line 2212, in fit_generator
generator_output = next(output_generator)
File "/home/anaconda2/envs/dronet/lib/python3.5/site-packages/keras/utils/data_utils.py", line 570, in get
six.raise_from(StopIteration(e), e)
File "<string>", line 2, in raise_from
StopIteration
Issue Analytics
- State:
- Created 5 years ago
- Comments:11
Top Results From Across the Web
How to correctly install Keras and Tensorflow
Click to install Keras and Tensorflow together using pip. Understand how to use these Python libraries for machine learning use cases.
Read more >python - Cannot install TensorFlow 1.x
It works for me to install 1.x tensorflow with the following command: pip3 install https://storage ...
Read more >Installing TensorFlow on the M1 Mac | by Wei-Meng Lee
If you are a Mac user, you probably have one of the latest machines running Apple Silicon. To utilize Apple's ML Compute framework...
Read more >PyDev | Linux-Blog – Dr. Mönchmeyer / anracon – Augsburg | Page 2
I do this for an Opensuse Leap system, but a transfer to other Linux distributions ... In my case this is KDE –...
Read more >version: TensorFlow
TensorFlow, an open source software library for machine learning. ... It includes Python 3.6, TensorFlow 1.4, Keras 2, XGBoost, LightGBM and Vowpal Wabbit....
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
I used the versions fixed before (python 3.4 / keras 2.1.4 / Tensorflow 1.5.0). I substituted the next function with the 2 functions above. In the trainModel function in cnn.py, “decay” is not recognized as argument of the compile function despite the fact that is a learning rate for the optimizer used to compile the model. So i written it like this optimizer=optimizers.Adam(decay=1e-5) model.compile(loss=[utils.hard_mining_mse(model.k_mse), utils.hard_mining_entropy(model.k_entropy)], optimizer=optimizer, loss_weights=[model.alpha, model.beta])
@MerouaneB thanks for your feedback. I will soon update the repo to adjust for the new changes in Keras.