RuntimeError: Error(s) in loading state_dict for Net
See original GitHub issueHi Mr. Zhang:
When I test pre-trained model on MINC-2500 using:
python main.py --dataset minc --model deepten --nclass 23 --resume deepten_minc.pth --eval
,
I got the following errors:
=> loading checkpoint 'deepten_minc.pth'
Traceback (most recent call last):
File "main.py", line 174, in <module>
main()
File "main.py", line 72, in main
model.load_state_dict(checkpoint['state_dict'])
File "/Users/pro/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 719, in load_state_dict
self.__class__.__name__, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for Net:
Missing key(s) in state_dict: "pretrained.conv1.weight", "pretrained.bn1.weight", "pretrained.bn1.bias", "pretrained.bn1.running_mean", "pretrained.bn1.running_var", "pretrained.layer1.0.conv1.weight", "pretrained.layer1.0.bn1.weight", "pretrained.layer1.0.bn1.bias", "pretrained.layer1.0.bn1.running_mean", "pretrained.layer1.0.bn1.running_var", "pretrained.layer1.0.conv2.weight", "pretrained.layer1.0.bn2.weight", "pretrained.layer1.0.bn2.bias", "pretrained.layer1.0.bn2.running_mean", "pretrained.layer1.0.bn2.running_var", "pretrained.layer1.0.conv3.weight", "pretrained.layer1.0.bn3.weight", "pretrained.layer1.0.bn3.bias", "pretrained.layer1.0.bn3.running_mean", "pretrained.layer1.0.bn3.running_var", "pretrained.layer1.0.downsample.0.weight", "pretrained.layer1.0.downsample.1.weight", "pretrained.layer1.0.downsample.1.bias", "pretrained.layer1.0.downsample.1.running_mean", "pretrained.layer1.0.downsample.1.running_var", "pretrained.layer1.1.conv1.weight", "pretrained.layer1.1.bn1.weight", "pretrained.layer1.1.bn1.bias", "pretrained.layer1.1.bn1.running_mean", "pretrained.layer1.1.bn1.running_var", "pretrained.layer1.1.conv2.weight", "pretrained.layer1.1.bn2.weight", "pretrained.layer1.1.bn2.bias", "pretrained.layer1.1.bn2.running_mean", "pretrained.layer1.1.bn2.running_var", "pretrained.layer1.1.conv3.weight", "pretrained.layer1.1.bn3.weight", "pretrained.layer1.1.bn3.bias", "pretrained.layer1.1.bn3.running_mean", "pretrained.layer1.1.bn3.running_var", "pretrained.layer1.2.conv1.weight", "pretrained.layer1.2.bn1.weight", "pretrained.layer1.2.bn1.bias", "pretrained.layer1.2.bn1.running_mean", "pretrained.layer1.2.bn1.running_var", "pretrained.layer1.2.conv2.weight", "pretrained.layer1.2.bn2.weight", "pretrained.layer1.2.bn2.bias", "pretrained.layer1.2.bn2.running_mean", "pretrained.layer1.2.bn2.running_var", "pretrained.layer1.2.conv3.weight", "pretrained.layer1.2.bn3.weight", "pretrained.layer1.2.bn3.bias", "pretrained.layer1.2.bn3.running_mean", "pretrained.layer1.2.bn3.running_var", "pretrained.layer2.0.conv1.weight", "pretrained.layer2.0.bn1.weight", "pretrained.layer2.0.bn1.bias", "pretrained.layer2.0.bn1.running_mean", "pretrained.layer2.0.bn1.running_var", "pretrained.layer2.0.conv2.weight", "pretrained.layer2.0.bn2.weight", "pretrained.layer2.0.bn2.bias", "pretrained.layer2.0.bn2.running_mean", "pretrained.layer2.0.bn2.running_var", "pretrained.layer2.0.conv3.weight", "pretrained.layer2.0.bn3.weight", "pretrained.layer2.0.bn3.bias", "pretrained.layer2.0.bn3.running_mean", "pretrained.layer2.0.bn3.running_var", "pretrained.layer2.0.downsample.0.weight", "pretrained.layer2.0.downsample.1.weight", "pretrained.layer2.0.downsample.1.bias", "pretrained.layer2.0.downsample.1.running_mean", "pretrained.layer2.0.downsample.1.running_var", "pretrained.layer2.1.conv1.weight", "pretrained.layer2.1.bn1.weight", "pretrained.layer2.1.bn1.bias", "pretrained.layer2.1.bn1.running_mean", "pretrained.layer2.1.bn1.running_var", "pretrained.layer2.1.conv2.weight", "pretrained.layer2.1.bn2.weight", "pretrained.layer2.1.bn2.bias", "pretrained.layer2.1.bn2.running_mean", "pretrained.layer2.1.bn2.running_var", "pretrained.layer2.1.conv3.weight", "pretrained.layer2.1.bn3.weight", "pretrained.layer2.1.bn3.bias", "pretrained.layer2.1.bn3.running_mean", "pretrained.layer2.1.bn3.running_var", "pretrained.layer2.2.conv1.weight", "pretrained.layer2.2.bn1.weight", "pretrained.layer2.2.bn1.bias", "pretrained.layer2.2.bn1.running_mean", "pretrained.layer2.2.bn1.running_var", "pretrained.layer2.2.conv2.weight", "pretrained.layer2.2.bn2.weight", "pretrained.layer2.2.bn2.bias", "pretrained.layer2.2.bn2.running_mean", "pretrained.layer2.2.bn2.running_var", "pretrained.layer2.2.conv3.weight", "pretrained.layer2.2.bn3.weight", "pretrained.layer2.2.bn3.bias", "pretrained.layer2.2.bn3.running_mean", "pretrained.layer2.2.bn3.running_var", "pretrained.layer2.3.conv1.weight", "pretrained.layer2.3.bn1.weight", "pretrained.layer2.3.bn1.bias", "pretrained.layer2.3.bn1.running_mean", "pretrained.layer2.3.bn1.running_var", "pretrained.layer2.3.conv2.weight", "pretrained.layer2.3.bn2.weight", "pretrained.layer2.3.bn2.bias", "pretrained.layer2.3.bn2.running_mean", "pretrained.layer2.3.bn2.running_var", "pretrained.layer2.3.conv3.weight", "pretrained.layer2.3.bn3.weight", "pretrained.layer2.3.bn3.bias", "pretrained.layer2.3.bn3.running_mean", "pretrained.layer2.3.bn3.running_var", "pretrained.layer3.0.conv1.weight", "pretrained.layer3.0.bn1.weight", "pretrained.layer3.0.bn1.bias", "pretrained.layer3.0.bn1.running_mean", "pretrained.layer3.0.bn1.running_var", "pretrained.layer3.0.conv2.weight", "pretrained.layer3.0.bn2.weight", "pretrained.layer3.0.bn2.bias", "pretrained.layer3.0.bn2.running_mean", "pretrained.layer3.0.bn2.running_var", "pretrained.layer3.0.conv3.weight", "pretrained.layer3.0.bn3.weight", "pretrained.layer3.0.bn3.bias", "pretrained.layer3.0.bn3.running_mean", "pretrained.layer3.0.bn3.running_var", "pretrained.layer3.0.downsample.0.weight", "pretrained.layer3.0.downsample.1.weight", "pretrained.layer3.0.downsample.1.bias", "pretrained.layer3.0.downsample.1.running_mean", "pretrained.layer3.0.downsample.1.running_var", "pretrained.layer3.1.conv1.weight", "pretrained.layer3.1.bn1.weight", "pretrained.layer3.1.bn1.bias", "pretrained.layer3.1.bn1.running_mean", "pretrained.layer3.1.bn1.running_var", "pretrained.layer3.1.conv2.weight", "pretrained.layer3.1.bn2.weight", "pretrained.layer3.1.bn2.bias", "pretrained.layer3.1.bn2.running_mean", "pretrained.layer3.1.bn2.running_var", "pretrained.layer3.1.conv3.weight", "pretrained.layer3.1.bn3.weight", "pretrained.layer3.1.bn3.bias", "pretrained.layer3.1.bn3.running_mean", "pretrained.layer3.1.bn3.running_var", "pretrained.layer3.2.conv1.weight", "pretrained.layer3.2.bn1.weight", "pretrained.layer3.2.bn1.bias", "pretrained.layer3.2.bn1.running_mean", "pretrained.layer3.2.bn1.running_var", "pretrained.layer3.2.conv2.weight", "pretrained.layer3.2.bn2.weight", "pretrained.layer3.2.bn2.bias", "pretrained.layer3.2.bn2.running_mean", "pretrained.layer3.2.bn2.running_var", "pretrained.layer3.2.conv3.weight", "pretrained.layer3.2.bn3.weight", "pretrained.layer3.2.bn3.bias", "pretrained.layer3.2.bn3.running_mean", "pretrained.layer3.2.bn3.running_var", "pretrained.layer3.3.conv1.weight", "pretrained.layer3.3.bn1.weight", "pretrained.layer3.3.bn1.bias", "pretrained.layer3.3.bn1.running_mean", "pretrained.layer3.3.bn1.running_var", "pretrained.layer3.3.conv2.weight", "pretrained.layer3.3.bn2.weight", "pretrained.layer3.3.bn2.bias", "pretrained.layer3.3.bn2.running_mean", "pretrained.layer3.3.bn2.running_var", "pretrained.layer3.3.conv3.weight", "pretrained.layer3.3.bn3.weight", "pretrained.layer3.3.bn3.bias", "pretrained.layer3.3.bn3.running_mean", "pretrained.layer3.3.bn3.running_var", "pretrained.layer3.4.conv1.weight", "pretrained.layer3.4.bn1.weight", "pretrained.layer3.4.bn1.bias", "pretrained.layer3.4.bn1.running_mean", "pretrained.layer3.4.bn1.running_var", "pretrained.layer3.4.conv2.weight", "pretrained.layer3.4.bn2.weight", "pretrained.layer3.4.bn2.bias", "pretrained.layer3.4.bn2.running_mean", "pretrained.layer3.4.bn2.running_var", "pretrained.layer3.4.conv3.weight", "pretrained.layer3.4.bn3.weight", "pretrained.layer3.4.bn3.bias", "pretrained.layer3.4.bn3.running_mean", "pretrained.layer3.4.bn3.running_var", "pretrained.layer3.5.conv1.weight", "pretrained.layer3.5.bn1.weight", "pretrained.layer3.5.bn1.bias", "pretrained.layer3.5.bn1.running_mean", "pretrained.layer3.5.bn1.running_var", "pretrained.layer3.5.conv2.weight", "pretrained.layer3.5.bn2.weight", "pretrained.layer3.5.bn2.bias", "pretrained.layer3.5.bn2.running_mean", "pretrained.layer3.5.bn2.running_var", "pretrained.layer3.5.conv3.weight", "pretrained.layer3.5.bn3.weight", "pretrained.layer3.5.bn3.bias", "pretrained.layer3.5.bn3.running_mean", "pretrained.layer3.5.bn3.running_var", "pretrained.layer4.0.conv1.weight", "pretrained.layer4.0.bn1.weight", "pretrained.layer4.0.bn1.bias", "pretrained.layer4.0.bn1.running_mean", "pretrained.layer4.0.bn1.running_var", "pretrained.layer4.0.conv2.weight", "pretrained.layer4.0.bn2.weight", "pretrained.layer4.0.bn2.bias", "pretrained.layer4.0.bn2.running_mean", "pretrained.layer4.0.bn2.running_var", "pretrained.layer4.0.conv3.weight", "pretrained.layer4.0.bn3.weight", "pretrained.layer4.0.bn3.bias", "pretrained.layer4.0.bn3.running_mean", "pretrained.layer4.0.bn3.running_var", "pretrained.layer4.0.downsample.0.weight", "pretrained.layer4.0.downsample.1.weight", "pretrained.layer4.0.downsample.1.bias", "pretrained.layer4.0.downsample.1.running_mean", "pretrained.layer4.0.downsample.1.running_var", "pretrained.layer4.1.conv1.weight", "pretrained.layer4.1.bn1.weight", "pretrained.layer4.1.bn1.bias", "pretrained.layer4.1.bn1.running_mean", "pretrained.layer4.1.bn1.running_var", "pretrained.layer4.1.conv2.weight", "pretrained.layer4.1.bn2.weight", "pretrained.layer4.1.bn2.bias", "pretrained.layer4.1.bn2.running_mean", "pretrained.layer4.1.bn2.running_var", "pretrained.layer4.1.conv3.weight", "pretrained.layer4.1.bn3.weight", "pretrained.layer4.1.bn3.bias", "pretrained.layer4.1.bn3.running_mean", "pretrained.layer4.1.bn3.running_var", "pretrained.layer4.2.conv1.weight", "pretrained.layer4.2.bn1.weight", "pretrained.layer4.2.bn1.bias", "pretrained.layer4.2.bn1.running_mean", "pretrained.layer4.2.bn1.running_var", "pretrained.layer4.2.conv2.weight", "pretrained.layer4.2.bn2.weight", "pretrained.layer4.2.bn2.bias", "pretrained.layer4.2.bn2.running_mean", "pretrained.layer4.2.bn2.running_var", "pretrained.layer4.2.conv3.weight", "pretrained.layer4.2.bn3.weight", "pretrained.layer4.2.bn3.bias", "pretrained.layer4.2.bn3.running_mean", "pretrained.layer4.2.bn3.running_var", "pretrained.fc.weight", "pretrained.fc.bias", "head.0.weight", "head.0.bias", "head.1.weight", "head.1.bias", "head.1.running_mean", "head.1.running_var", "head.3.codewords", "head.3.scale", "head.6.weight", "head.6.bias".
Unexpected key(s) in state_dict: "module.pretrained.conv1.weight", "module.pretrained.bn1.weight", "module.pretrained.bn1.bias", "module.pretrained.bn1.running_mean", "module.pretrained.bn1.running_var", "module.pretrained.bn1.num_batches_tracked", "module.pretrained.layer1.0.conv1.weight", "module.pretrained.layer1.0.bn1.weight", "module.pretrained.layer1.0.bn1.bias", "module.pretrained.layer1.0.bn1.running_mean", "module.pretrained.layer1.0.bn1.running_var", "module.pretrained.layer1.0.bn1.num_batches_tracked", "module.pretrained.layer1.0.conv2.weight", "module.pretrained.layer1.0.bn2.weight", "module.pretrained.layer1.0.bn2.bias", "module.pretrained.layer1.0.bn2.running_mean", "module.pretrained.layer1.0.bn2.running_var", "module.pretrained.layer1.0.bn2.num_batches_tracked", "module.pretrained.layer1.0.conv3.weight", "module.pretrained.layer1.0.bn3.weight", "module.pretrained.layer1.0.bn3.bias", "module.pretrained.layer1.0.bn3.running_mean", "module.pretrained.layer1.0.bn3.running_var", "module.pretrained.layer1.0.bn3.num_batches_tracked", "module.pretrained.layer1.0.downsample.0.weight", "module.pretrained.layer1.0.downsample.1.weight", "module.pretrained.layer1.0.downsample.1.bias", "module.pretrained.layer1.0.downsample.1.running_mean", "module.pretrained.layer1.0.downsample.1.running_var", "module.pretrained.layer1.0.downsample.1.num_batches_tracked", "module.pretrained.layer1.1.conv1.weight", "module.pretrained.layer1.1.bn1.weight", "module.pretrained.layer1.1.bn1.bias", "module.pretrained.layer1.1.bn1.running_mean", "module.pretrained.layer1.1.bn1.running_var", "module.pretrained.layer1.1.bn1.num_batches_tracked", "module.pretrained.layer1.1.conv2.weight", "module.pretrained.layer1.1.bn2.weight", "module.pretrained.layer1.1.bn2.bias", "module.pretrained.layer1.1.bn2.running_mean", "module.pretrained.layer1.1.bn2.running_var", "module.pretrained.layer1.1.bn2.num_batches_tracked", "module.pretrained.layer1.1.conv3.weight", "module.pretrained.layer1.1.bn3.weight", "module.pretrained.layer1.1.bn3.bias", "module.pretrained.layer1.1.bn3.running_mean", "module.pretrained.layer1.1.bn3.running_var", "module.pretrained.layer1.1.bn3.num_batches_tracked", "module.pretrained.layer1.2.conv1.weight", "module.pretrained.layer1.2.bn1.weight", "module.pretrained.layer1.2.bn1.bias", "module.pretrained.layer1.2.bn1.running_mean", "module.pretrained.layer1.2.bn1.running_var", "module.pretrained.layer1.2.bn1.num_batches_tracked", "module.pretrained.layer1.2.conv2.weight", "module.pretrained.layer1.2.bn2.weight", "module.pretrained.layer1.2.bn2.bias", "module.pretrained.layer1.2.bn2.running_mean", "module.pretrained.layer1.2.bn2.running_var", "module.pretrained.layer1.2.bn2.num_batches_tracked", "module.pretrained.layer1.2.conv3.weight", "module.pretrained.layer1.2.bn3.weight", "module.pretrained.layer1.2.bn3.bias", "module.pretrained.layer1.2.bn3.running_mean", "module.pretrained.layer1.2.bn3.running_var", "module.pretrained.layer1.2.bn3.num_batches_tracked", "module.pretrained.layer2.0.conv1.weight", "module.pretrained.layer2.0.bn1.weight", "module.pretrained.layer2.0.bn1.bias", "module.pretrained.layer2.0.bn1.running_mean", "module.pretrained.layer2.0.bn1.running_var", "module.pretrained.layer2.0.bn1.num_batches_tracked", "module.pretrained.layer2.0.conv2.weight", "module.pretrained.layer2.0.bn2.weight", "module.pretrained.layer2.0.bn2.bias", "module.pretrained.layer2.0.bn2.running_mean", "module.pretrained.layer2.0.bn2.running_var", "module.pretrained.layer2.0.bn2.num_batches_tracked", "module.pretrained.layer2.0.conv3.weight", "module.pretrained.layer2.0.bn3.weight", "module.pretrained.layer2.0.bn3.bias", "module.pretrained.layer2.0.bn3.running_mean", "module.pretrained.layer2.0.bn3.running_var", "module.pretrained.layer2.0.bn3.num_batches_tracked", "module.pretrained.layer2.0.downsample.0.weight", "module.pretrained.layer2.0.downsample.1.weight", "module.pretrained.layer2.0.downsample.1.bias", "module.pretrained.layer2.0.downsample.1.running_mean", "module.pretrained.layer2.0.downsample.1.running_var", "module.pretrained.layer2.0.downsample.1.num_batches_tracked", "module.pretrained.layer2.1.conv1.weight", "module.pretrained.layer2.1.bn1.weight", "module.pretrained.layer2.1.bn1.bias", "module.pretrained.layer2.1.bn1.running_mean", "module.pretrained.layer2.1.bn1.running_var", "module.pretrained.layer2.1.bn1.num_batches_tracked", "module.pretrained.layer2.1.conv2.weight", "module.pretrained.layer2.1.bn2.weight", "module.pretrained.layer2.1.bn2.bias", "module.pretrained.layer2.1.bn2.running_mean", "module.pretrained.layer2.1.bn2.running_var", "module.pretrained.layer2.1.bn2.num_batches_tracked", "module.pretrained.layer2.1.conv3.weight", "module.pretrained.layer2.1.bn3.weight", "module.pretrained.layer2.1.bn3.bias", "module.pretrained.layer2.1.bn3.running_mean", "module.pretrained.layer2.1.bn3.running_var", "module.pretrained.layer2.1.bn3.num_batches_tracked", "module.pretrained.layer2.2.conv1.weight", "module.pretrained.layer2.2.bn1.weight", "module.pretrained.layer2.2.bn1.bias", "module.pretrained.layer2.2.bn1.running_mean", "module.pretrained.layer2.2.bn1.running_var", "module.pretrained.layer2.2.bn1.num_batches_tracked", "module.pretrained.layer2.2.conv2.weight", "module.pretrained.layer2.2.bn2.weight", "module.pretrained.layer2.2.bn2.bias", "module.pretrained.layer2.2.bn2.running_mean", "module.pretrained.layer2.2.bn2.running_var", "module.pretrained.layer2.2.bn2.num_batches_tracked", "module.pretrained.layer2.2.conv3.weight", "module.pretrained.layer2.2.bn3.weight", "module.pretrained.layer2.2.bn3.bias", "module.pretrained.layer2.2.bn3.running_mean", "module.pretrained.layer2.2.bn3.running_var", "module.pretrained.layer2.2.bn3.num_batches_tracked", "module.pretrained.layer2.3.conv1.weight", "module.pretrained.layer2.3.bn1.weight", "module.pretrained.layer2.3.bn1.bias", "module.pretrained.layer2.3.bn1.running_mean", "module.pretrained.layer2.3.bn1.running_var", "module.pretrained.layer2.3.bn1.num_batches_tracked", "module.pretrained.layer2.3.conv2.weight", "module.pretrained.layer2.3.bn2.weight", "module.pretrained.layer2.3.bn2.bias", "module.pretrained.layer2.3.bn2.running_mean", "module.pretrained.layer2.3.bn2.running_var", "module.pretrained.layer2.3.bn2.num_batches_tracked", "module.pretrained.layer2.3.conv3.weight", "module.pretrained.layer2.3.bn3.weight", "module.pretrained.layer2.3.bn3.bias", "module.pretrained.layer2.3.bn3.running_mean", "module.pretrained.layer2.3.bn3.running_var", "module.pretrained.layer2.3.bn3.num_batches_tracked", "module.pretrained.layer3.0.conv1.weight", "module.pretrained.layer3.0.bn1.weight", "module.pretrained.layer3.0.bn1.bias", "module.pretrained.layer3.0.bn1.running_mean", "module.pretrained.layer3.0.bn1.running_var", "module.pretrained.layer3.0.bn1.num_batches_tracked", "module.pretrained.layer3.0.conv2.weight", "module.pretrained.layer3.0.bn2.weight", "module.pretrained.layer3.0.bn2.bias", "module.pretrained.layer3.0.bn2.running_mean", "module.pretrained.layer3.0.bn2.running_var", "module.pretrained.layer3.0.bn2.num_batches_tracked", "module.pretrained.layer3.0.conv3.weight", "module.pretrained.layer3.0.bn3.weight", "module.pretrained.layer3.0.bn3.bias", "module.pretrained.layer3.0.bn3.running_mean", "module.pretrained.layer3.0.bn3.running_var", "module.pretrained.layer3.0.bn3.num_batches_tracked", "module.pretrained.layer3.0.downsample.0.weight", "module.pretrained.layer3.0.downsample.1.weight", "module.pretrained.layer3.0.downsample.1.bias", "module.pretrained.layer3.0.downsample.1.running_mean", "module.pretrained.layer3.0.downsample.1.running_var", "module.pretrained.layer3.0.downsample.1.num_batches_tracked", "module.pretrained.layer3.1.conv1.weight", "module.pretrained.layer3.1.bn1.weight", "module.pretrained.layer3.1.bn1.bias", "module.pretrained.layer3.1.bn1.running_mean", "module.pretrained.layer3.1.bn1.running_var", "module.pretrained.layer3.1.bn1.num_batches_tracked", "module.pretrained.layer3.1.conv2.weight", "module.pretrained.layer3.1.bn2.weight", "module.pretrained.layer3.1.bn2.bias", "module.pretrained.layer3.1.bn2.running_mean", "module.pretrained.layer3.1.bn2.running_var", "module.pretrained.layer3.1.bn2.num_batches_tracked", "module.pretrained.layer3.1.conv3.weight", "module.pretrained.layer3.1.bn3.weight", "module.pretrained.layer3.1.bn3.bias", "module.pretrained.layer3.1.bn3.running_mean", "module.pretrained.layer3.1.bn3.running_var", "module.pretrained.layer3.1.bn3.num_batches_tracked", "module.pretrained.layer3.2.conv1.weight", "module.pretrained.layer3.2.bn1.weight", "module.pretrained.layer3.2.bn1.bias", "module.pretrained.layer3.2.bn1.running_mean", "module.pretrained.layer3.2.bn1.running_var", "module.pretrained.layer3.2.bn1.num_batches_tracked", "module.pretrained.layer3.2.conv2.weight", "module.pretrained.layer3.2.bn2.weight", "module.pretrained.layer3.2.bn2.bias", "module.pretrained.layer3.2.bn2.running_mean", "module.pretrained.layer3.2.bn2.running_var", "module.pretrained.layer3.2.bn2.num_batches_tracked", "module.pretrained.layer3.2.conv3.weight", "module.pretrained.layer3.2.bn3.weight", "module.pretrained.layer3.2.bn3.bias", "module.pretrained.layer3.2.bn3.running_mean", "module.pretrained.layer3.2.bn3.running_var", "module.pretrained.layer3.2.bn3.num_batches_tracked", "module.pretrained.layer3.3.conv1.weight", "module.pretrained.layer3.3.bn1.weight", "module.pretrained.layer3.3.bn1.bias", "module.pretrained.layer3.3.bn1.running_mean", "module.pretrained.layer3.3.bn1.running_var", "module.pretrained.layer3.3.bn1.num_batches_tracked", "module.pretrained.layer3.3.conv2.weight", "module.pretrained.layer3.3.bn2.weight", "module.pretrained.layer3.3.bn2.bias", "module.pretrained.layer3.3.bn2.running_mean", "module.pretrained.layer3.3.bn2.running_var", "module.pretrained.layer3.3.bn2.num_batches_tracked", "module.pretrained.layer3.3.conv3.weight", "module.pretrained.layer3.3.bn3.weight", "module.pretrained.layer3.3.bn3.bias", "module.pretrained.layer3.3.bn3.running_mean", "module.pretrained.layer3.3.bn3.running_var", "module.pretrained.layer3.3.bn3.num_batches_tracked", "module.pretrained.layer3.4.conv1.weight", "module.pretrained.layer3.4.bn1.weight", "module.pretrained.layer3.4.bn1.bias", "module.pretrained.layer3.4.bn1.running_mean", "module.pretrained.layer3.4.bn1.running_var", "module.pretrained.layer3.4.bn1.num_batches_tracked", "module.pretrained.layer3.4.conv2.weight", "module.pretrained.layer3.4.bn2.weight", "module.pretrained.layer3.4.bn2.bias", "module.pretrained.layer3.4.bn2.running_mean", "module.pretrained.layer3.4.bn2.running_var", "module.pretrained.layer3.4.bn2.num_batches_tracked", "module.pretrained.layer3.4.conv3.weight", "module.pretrained.layer3.4.bn3.weight", "module.pretrained.layer3.4.bn3.bias", "module.pretrained.layer3.4.bn3.running_mean", "module.pretrained.layer3.4.bn3.running_var", "module.pretrained.layer3.4.bn3.num_batches_tracked", "module.pretrained.layer3.5.conv1.weight", "module.pretrained.layer3.5.bn1.weight", "module.pretrained.layer3.5.bn1.bias", "module.pretrained.layer3.5.bn1.running_mean", "module.pretrained.layer3.5.bn1.running_var", "module.pretrained.layer3.5.bn1.num_batches_tracked", "module.pretrained.layer3.5.conv2.weight", "module.pretrained.layer3.5.bn2.weight", "module.pretrained.layer3.5.bn2.bias", "module.pretrained.layer3.5.bn2.running_mean", "module.pretrained.layer3.5.bn2.running_var", "module.pretrained.layer3.5.bn2.num_batches_tracked", "module.pretrained.layer3.5.conv3.weight", "module.pretrained.layer3.5.bn3.weight", "module.pretrained.layer3.5.bn3.bias", "module.pretrained.layer3.5.bn3.running_mean", "module.pretrained.layer3.5.bn3.running_var", "module.pretrained.layer3.5.bn3.num_batches_tracked", "module.pretrained.layer4.0.conv1.weight", "module.pretrained.layer4.0.bn1.weight", "module.pretrained.layer4.0.bn1.bias", "module.pretrained.layer4.0.bn1.running_mean", "module.pretrained.layer4.0.bn1.running_var", "module.pretrained.layer4.0.bn1.num_batches_tracked", "module.pretrained.layer4.0.conv2.weight", "module.pretrained.layer4.0.bn2.weight", "module.pretrained.layer4.0.bn2.bias", "module.pretrained.layer4.0.bn2.running_mean", "module.pretrained.layer4.0.bn2.running_var", "module.pretrained.layer4.0.bn2.num_batches_tracked", "module.pretrained.layer4.0.conv3.weight", "module.pretrained.layer4.0.bn3.weight", "module.pretrained.layer4.0.bn3.bias", "module.pretrained.layer4.0.bn3.running_mean", "module.pretrained.layer4.0.bn3.running_var", "module.pretrained.layer4.0.bn3.num_batches_tracked", "module.pretrained.layer4.0.downsample.0.weight", "module.pretrained.layer4.0.downsample.1.weight", "module.pretrained.layer4.0.downsample.1.bias", "module.pretrained.layer4.0.downsample.1.running_mean", "module.pretrained.layer4.0.downsample.1.running_var", "module.pretrained.layer4.0.downsample.1.num_batches_tracked", "module.pretrained.layer4.1.conv1.weight", "module.pretrained.layer4.1.bn1.weight", "module.pretrained.layer4.1.bn1.bias", "module.pretrained.layer4.1.bn1.running_mean", "module.pretrained.layer4.1.bn1.running_var", "module.pretrained.layer4.1.bn1.num_batches_tracked", "module.pretrained.layer4.1.conv2.weight", "module.pretrained.layer4.1.bn2.weight", "module.pretrained.layer4.1.bn2.bias", "module.pretrained.layer4.1.bn2.running_mean", "module.pretrained.layer4.1.bn2.running_var", "module.pretrained.layer4.1.bn2.num_batches_tracked", "module.pretrained.layer4.1.conv3.weight", "module.pretrained.layer4.1.bn3.weight", "module.pretrained.layer4.1.bn3.bias", "module.pretrained.layer4.1.bn3.running_mean", "module.pretrained.layer4.1.bn3.running_var", "module.pretrained.layer4.1.bn3.num_batches_tracked", "module.pretrained.layer4.2.conv1.weight", "module.pretrained.layer4.2.bn1.weight", "module.pretrained.layer4.2.bn1.bias", "module.pretrained.layer4.2.bn1.running_mean", "module.pretrained.layer4.2.bn1.running_var", "module.pretrained.layer4.2.bn1.num_batches_tracked", "module.pretrained.layer4.2.conv2.weight", "module.pretrained.layer4.2.bn2.weight", "module.pretrained.layer4.2.bn2.bias", "module.pretrained.layer4.2.bn2.running_mean", "module.pretrained.layer4.2.bn2.running_var", "module.pretrained.layer4.2.bn2.num_batches_tracked", "module.pretrained.layer4.2.conv3.weight", "module.pretrained.layer4.2.bn3.weight", "module.pretrained.layer4.2.bn3.bias", "module.pretrained.layer4.2.bn3.running_mean", "module.pretrained.layer4.2.bn3.running_var", "module.pretrained.layer4.2.bn3.num_batches_tracked", "module.pretrained.fc.weight", "module.pretrained.fc.bias", "module.head.0.weight", "module.head.0.bias", "module.head.1.weight", "module.head.1.bias", "module.head.1.running_mean", "module.head.1.running_var", "module.head.1.num_batches_tracked", "module.head.3.codewords", "module.head.3.scale", "module.head.6.weight", "module.head.6.bias".
I have successfully done the prior instructions but I don’t know why I missed these keys and had those unexpected keys. It seems like something got messed up in deepten_minc.pth
.
Could you help me solve this problems? Thanks!
my_env: pytorch 0.4.1, anaconda3, python 3.6, macOS
Issue Analytics
- State:
- Created 5 years ago
- Comments:19 (4 by maintainers)
Top Results From Across the Web
RuntimeError: Error(s) in loading state_dict for ResNet
I was using Pytorch 0.4.1 but Jupyter Notebook which I loaded uses 0.4.0. So I added strict=False attribute to load_state_dict().
Read more >RuntimeError: Error(s) in loading state_dict for DynamicUnet
Here, I aim to load the model and weights to run inference with new datasets. Versions: torch==1.7.1; fastai==2.7.7; fastcore==1.5.6; torch==1.7 ...
Read more >RuntimeError: Error in loading state_dict for SSD: Unexpected ...
This is the complete error: RuntimeError: Error(s) in loading state_dict for SSD: Unexpected key(s) in state_dict: “base_net.1.0.weight”, ...
Read more >Error(s) in loading state_dict for BertForTokenClassification
Hi, I am trying to solve this error for so long, nothing seems to work. Loading the dataset... - done. Traceback (most recent...
Read more >Error(s) in loading state_dict for ResNet 问题解决 - CSDN博客
当使用如下命令加载模型的时候,会报错,没有一些keys:model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))RuntimeError: Error(s) ...
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Adding model = nn.DataParallel(model) before loading should fix it
you can use strict=False in load_state_dict. This can solved the issue.