CUDA compilation error with Ctx Length>2000
See original GitHub issueHello, I am trying out RWKV with audio modality and when I set T_MAX>>1000, it throws this error:
Emitting ninja build file /root/.cache/torch_extensions/py39_cu116/timex/build.ninja...
Building extension module timex...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/2] /usr/local/cuda/bin/nvcc -DTORCH_EXTENSION_NAME=timex -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1013\" -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/TH -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /root/anaconda3/envs/surya-env/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' --use_fast_math --extra-device-vectorization -DTmax=10000 -DBF=8 -DBB=2 -std=c++14 -c cuda/timex_cuda.cu -o timex_cuda.cuda.o
FAILED: timex_cuda.cuda.o
/usr/local/cuda/bin/nvcc -DTORCH_EXTENSION_NAME=timex -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1013\" -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/TH -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /root/anaconda3/envs/surya-env/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' --use_fast_math --extra-device-vectorization -DTmax=10000 -DBF=8 -DBB=2 -std=c++14 -c cuda/timex_cuda.cu -o timex_cuda.cuda.o
ptxas error : Entry function '_Z15kernel_backwardIfEvPKT_S2_S2_PS0_S3_iii' uses too much shared data (0x30d40 bytes, 0xc000 max)
ptxas error : Entry function '_Z14kernel_forwardIfEvPKT_S2_PS0_S0_iii' uses too much shared data (0x57e40 bytes, 0xc000 max)
ninja: build stopped: subcommand failed.
GPU: A100, VRAM: 42GB, CUDA 11.6
I am okay if the training takes a bit long. But I need this to work. Don’t know any CUDA. Can you suggest some workarounds?
Thanks for the incredible work btw!
Issue Analytics
- State:
- Created a year ago
- Comments:8 (5 by maintainers)
Top Results From Across the Web
[ compilation issue] gpu_autodiff compilation error on ... - GitHub
Summary Hi, I have compilation issues with the following system settings: Platform: Windows 10, CUDA 11.1 Compiler: Cmake 3.21.1.0, ...
Read more >CUDA Python 12.0.0 documentation - GitHub Pages
While executing a kernel, the device encountered a load or store instruction on a memory address which is not aligned. This leaves the...
Read more >Transitioning from CUDA to HIP - AMD Documentation - Portal
Once the CUDA code is ported to HIP and is running on the CUDA machine, compile the ... Will cause compile error: #define...
Read more >Can't run RPC GPU tutorial on my own device - Questions
I'm looking at using RPC to cross compile and run on a Jetson TX2. ... connection to my device, and cuda I keep...
Read more >CUDA Compiler Driver NVCC - NVIDIA Documentation Center
The documentation for nvcc, the CUDA compiler driver. ... Using an unsupported host compiler may cause compilation failure or incorrect run time execution....
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
And the current design will overflow under FP16 😃 Wait for my new kernels.
Now the new RWKV-4 can compile ctxlen=4096 kernels 😃