error using meme format motifs
See original GitHub issueDear Mette Bentson,
When running BINdetect I get the belowissue with my motifs. I’m including an example of my MEME file. Any idea what may be causing this?
Many thanks for any help!
Steven
# TOBIAS 0.12.10 BINDetect (run started 2021-06-16 17:04:57.407317)
# Working directory: /work/rpapa/share/TOBIAS
# Command line call: TOBIAS BINDetect --motifs /work/rpapa/share/TOBIAS/motifs_meme/motif_1.txt --signals /work/rpapa/share/TOBIAS/erato.TExATAcxunique100_footprints.bw --genome /work/rpapa/share/REF/H_erato_dem/Herato_final.fasta --peaks /work/rpapa/share/TOBIAS/erato.TExATAcxunique100_peaks_start_end_original.rowsort.scafpos.bed --outdir BINDetect --cond_names erato_TE --cores 8
# ----- Input parameters -----
# signals: ['/work/rpapa/share/TOBIAS/erato.TExATAcxunique100_footprints.bw']
# peaks: /work/rpapa/share/TOBIAS/erato.TExATAcxunique100_peaks_start_end_original.rowsort.scafpos.bed
# motifs: ['/work/rpapa/share/TOBIAS/motifs_meme/motif_1.txt']
# genome: /work/rpapa/share/REF/H_erato_dem/Herato_final.fasta
# cond_names: ['erato_TE']
# peak_header: None
# naming: name_id
# motif_pvalue: 0.0001
# bound_pvalue: 0.001
# pseudo: None
# time_series: False
# skip_excel: False
# output_peaks: None
# prefix: bindetect
# outdir: /work/rpapa/share/TOBIAS/BINDetect
# cores: 8
# split: 100
# verbosity: 3
# ----- Output files -----
# /work/rpapa/share/TOBIAS/BINDetect/*/beds/*_erato_TE_bound.bed
# /work/rpapa/share/TOBIAS/BINDetect/*/beds/*_erato_TE_unbound.bed
# /work/rpapa/share/TOBIAS/BINDetect/*/beds/*_all.bed
# /work/rpapa/share/TOBIAS/BINDetect/*/plots/*_log2fcs.pdf
# /work/rpapa/share/TOBIAS/BINDetect/*/*_overview.txt
# /work/rpapa/share/TOBIAS/BINDetect/*/*_overview.xlsx
# /work/rpapa/share/TOBIAS/BINDetect/bindetect_distances.txt
# /work/rpapa/share/TOBIAS/BINDetect/bindetect_results.txt
# /work/rpapa/share/TOBIAS/BINDetect/bindetect_results.xlsx
# /work/rpapa/share/TOBIAS/BINDetect/bindetect_figures.pdf
2021-06-16 17:04:57 (18617) [INFO] ----- Processing input data -----
2021-06-16 17:04:57 (18617) [INFO] Checking reading/writing of files
2021-06-16 17:04:57 (18617) [INFO] Reading peaks
2021-06-16 17:04:57 (18617) [INFO] - Found 678 regions in input peaks
2021-06-16 17:04:57 (18617) [INFO] - Merged to 677 regions
2021-06-16 17:04:57 (18617) [INFO] Checking for match between --peaks and --fasta/--signals boundaries
2021-06-16 17:04:57 (18617) [INFO] - Comparing peaks to /work/rpapa/share/REF/H_erato_dem/Herato_final.fasta
2021-06-16 17:04:57 (18617) [INFO] - Comparing peaks to /work/rpapa/share/TOBIAS/erato.TExATAcxunique100_footprints.bw
2021-06-16 17:04:57 (18617) [INFO] Estimating GC content from peak sequences
2021-06-16 17:04:57 (18617) [INFO] - GC content estimated at 40.76%
2021-06-16 17:04:57 (18617) [INFO] Reading motifs from file
Traceback (most recent call last):
File "/cm/shared/apps/python3/3.6.10/bin/TOBIAS", line 11, in <module>
load_entry_point('tobias==0.12.10', 'console_scripts', 'TOBIAS')()
File "/cm/shared/apps/python3/3.6.10/lib/python3.6/site-packages/tobias/TOBIAS.py", line 154, in main
args.func(args)
File "/cm/shared/apps/python3/3.6.10/lib/python3.6/site-packages/tobias/tools/bindetect.py", line 223, in run_bindetect
motif_list += MotifList().from_file(f) #List of OneMotif objects
File "/cm/shared/apps/python3/3.6.10/lib/python3.6/site-packages/tobias/utils/motifs.py", line 253, in from_file
for c in range(motif.length):
TypeError: 'NoneType' object cannot be interpreted as an integer
MEME file:
MEME version 4
ALPHABET= ACGT
strands: + -
Background letter frequencies (from file `TExATAcaround_meme/dem_hydara_peaks_Genrich_all_merged.m1.mod'):
A 0.31000 C 0.19000 G 0.19000 T 0.31000
MOTIF 1 CAGMGNGA-DREME-1
letter-probability matrix: alength= 4 w= 8 nsites= 10974 E= 1.4e-1262
0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.652542 0.347458 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.098779 0.266721 0.303900 0.330600
0.000000 0.000000 1.000000 0.000000
1.000000 0.000000 0.000000 0.000000
MOTIF 2 CTYAACRC-DREME-2
letter-probability matrix: alength= 4 w= 8 nsites= 10470 E= 1.0e-1159
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 1.000000
0.000000 0.584241 0.000000 0.415759
1.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.661891 0.000000 0.338109 0.000000
0.000000 1.000000 0.000000 0.000000
Issue Analytics
- State:
- Created 2 years ago
- Comments:8 (4 by maintainers)
Top Results From Across the Web
FAQ - MEME Suite
Why don't the motif occurrences in the "Summary of Motifs" block diagrams match the occurrences shown in the individual motif block diagrams? Q....
Read more >Trying to load several MEME formatted motifs for use in ...
I run the following and see this error: > motifs <- importMatrix(filename, format="meme") Error in switch(alphabet, ACGT = "DNA", ...
Read more >ceqlogo error "No motifs were specified"
I tried to create logos with ceqlogo. My input is motif file with 30 motifs in minimal MEME format. With the following command,...
Read more >Identify motifs with MEME — runMeme • memes
MEME performs de-novo discovery of ungapped motifs present in the input sequences. It can be used in both discriminative and non-discriminative modes.
Read more >FIMO - MEME Suite
Motifs must be in MEME Motif Format. The web version of FIMO also allows you to type in motifs in additional formats. You...
Read more >Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start FreeTop Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found
Top GitHub Comments
Works!
Huge thanks,
Steven
From: Mette @.> Sent: Monday, June 21, 2021 8:58 AM To: @.> Cc: Steven M. Van @.>; @.> Subject: Re: [loosolab/TOBIAS] error using meme format motifs (#77)
Hi again Steven,
Good news - I found the bug, and have fixed this in tobias 0.12.11. Please fetch this version from PyPI (or from bioconda as soon as the repository updates). I hope this fixues the issue, and otherwise, feel free to let me know. Thanks!
Best Mette
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHubhttps://github.com/loosolab/TOBIAS/issues/77#issuecomment-865011217, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ABQOC45S5KSWKU3PORCNY6LTT4ZP7ANCNFSM462IU5MA.
Hi Steven,
Uh I am not familiar with the results from butterfly ATAC - I am not sure if CTCF is conserved in function?
I can only encourage you to check the general ATAC-seq quality measures like insertion-size distribution plots, reads-in-peaks enrichment (=signal-to-noise ratio) and mapping rate etc. If these look good, you can make better assumptions about why some TFs might not be creating strong footprints. Otherwise, as I mentioned, you can still use the footprinting values, although these will be mostly driven by accessibility.
Best Mette