question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

custom model doesn't work

See original GitHub issue

Prerequisite

🐞 Describe the bug

I added ‘mmdetection/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco_mydata.py’

_base_ = [
    '../_base_/models/mask_rcnn_r50_fpn.py',
    '../_base_/datasets/coco_instance.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

model = dict(
    roi_head=dict(
        bbox_head=dict(num_classes=2),
        mask_head=dict(num_classes=2)))

dataset_type = 'CocoDataset'
data_root = 'data/coco/'

data = dict(
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations.json',
        img_prefix=data_root),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations.json',
        img_prefix=data_root),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations.json',
        img_prefix=data_root))
evaluation = dict(metric=['bbox', 'segm'])

# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)

I modified ‘mmdet/core/evaluation/class_names.py’

def coco_classes():
    return [
        '_background_', 'flash_light'
    ]

I modified ‘mmdet/datasets/coco.py’

CLASSES = ('_background_', 'flash_light')

PALETTE = [(0, 0, 0), (0, 0, 128)]

I get a log file

2022-10-14 15:32:36,204 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
2022-10-14 15:32:36,204 - mmdet - INFO - Checkpoints will be saved to /home/unstruct/combination/mmdetection/work_dirs/mask_rcnn_r50_fpn_1x_coco_mydata by HardDiskBackend.
2022-10-14 15:32:39,200 - mmdet - INFO - Saving checkpoint at 1 epochs
2022-10-14 15:32:40,275 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:32:40,308 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:40,308 - mmdet - INFO - Evaluating segm...
2022-10-14 15:32:40,356 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.001
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:40,356 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:32:40,356 - mmdet - INFO - Epoch(val) [1][11]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000, segm_mAP: 0.0000, segm_mAP_50: 0.0010, segm_mAP_75: 0.0000, segm_mAP_s: 0.0000, segm_mAP_m: 0.0000, segm_mAP_l: 0.0000, segm_mAP_copypaste: 0.000 0.001 0.000 0.000 0.000 0.000
2022-10-14 15:32:43,315 - mmdet - INFO - Saving checkpoint at 2 epochs
2022-10-14 15:32:44,381 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:32:44,421 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:44,421 - mmdet - INFO - Evaluating segm...
2022-10-14 15:32:44,484 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:44,485 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:32:44,485 - mmdet - INFO - Epoch(val) [2][11]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000, segm_mAP: 0.0000, segm_mAP_50: 0.0000, segm_mAP_75: 0.0000, segm_mAP_s: 0.0000, segm_mAP_m: 0.0000, segm_mAP_l: 0.0000, segm_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000
2022-10-14 15:32:47,480 - mmdet - INFO - Saving checkpoint at 3 epochs
2022-10-14 15:32:48,561 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:32:48,603 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.008
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:48,603 - mmdet - INFO - Evaluating segm...
2022-10-14 15:32:48,669 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:48,670 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:32:48,670 - mmdet - INFO - Epoch(val) [3][11]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000, segm_mAP: 0.0000, segm_mAP_50: 0.0000, segm_mAP_75: 0.0000, segm_mAP_s: 0.0000, segm_mAP_m: 0.0000, segm_mAP_l: 0.0000, segm_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000
2022-10-14 15:32:51,667 - mmdet - INFO - Saving checkpoint at 4 epochs
2022-10-14 15:32:52,494 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:32:52,501 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:52,501 - mmdet - INFO - Evaluating segm...
2022-10-14 15:32:52,506 - mmdet - INFO - 
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.000

2022-10-14 15:32:52,506 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:32:52,506 - mmdet - INFO - Epoch(val) [4][11]	bbox_mAP: 0.0000, bbox_mAP_50: 0.0000, bbox_mAP_75: 0.0000, bbox_mAP_s: 0.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0000, bbox_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000, segm_mAP: 0.0000, segm_mAP_50: 0.0000, segm_mAP_75: 0.0000, segm_mAP_s: 0.0000, segm_mAP_m: 0.0000, segm_mAP_l: 0.0000, segm_mAP_copypaste: 0.000 0.000 0.000 0.000 0.000 0.000
2022-10-14 15:32:55,488 - mmdet - INFO - Saving checkpoint at 5 epochs
2022-10-14 15:32:56,297 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:32:56,297 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:32:56,297 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:32:56,297 - mmdet - INFO - Epoch(val) [5][11]	
2022-10-14 15:32:59,288 - mmdet - INFO - Saving checkpoint at 6 epochs
2022-10-14 15:33:00,108 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:00,108 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:00,108 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:00,108 - mmdet - INFO - Epoch(val) [6][11]	
2022-10-14 15:33:03,106 - mmdet - INFO - Saving checkpoint at 7 epochs
2022-10-14 15:33:03,924 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:03,924 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:03,925 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:03,925 - mmdet - INFO - Epoch(val) [7][11]	
2022-10-14 15:33:06,938 - mmdet - INFO - Saving checkpoint at 8 epochs
2022-10-14 15:33:07,776 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:07,777 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:07,777 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:07,777 - mmdet - INFO - Epoch(val) [8][11]	
2022-10-14 15:33:10,800 - mmdet - INFO - Saving checkpoint at 9 epochs
2022-10-14 15:33:11,632 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:11,632 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:11,633 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:11,633 - mmdet - INFO - Epoch(val) [9][11]	
2022-10-14 15:33:14,696 - mmdet - INFO - Saving checkpoint at 10 epochs
2022-10-14 15:33:15,530 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:15,530 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:15,531 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:15,531 - mmdet - INFO - Epoch(val) [10][11]	
2022-10-14 15:33:18,518 - mmdet - INFO - Saving checkpoint at 11 epochs
2022-10-14 15:33:19,347 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:19,348 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:19,348 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:19,348 - mmdet - INFO - Epoch(val) [11][11]	
2022-10-14 15:33:22,329 - mmdet - INFO - Saving checkpoint at 12 epochs
2022-10-14 15:33:23,155 - mmdet - INFO - Evaluating bbox...
2022-10-14 15:33:23,155 - mmdet - ERROR - The testing results of the whole dataset is empty.
2022-10-14 15:33:23,155 - mmdet - INFO - Exp name: mask_rcnn_r50_fpn_1x_coco_mydata.py
2022-10-14 15:33:23,155 - mmdet - INFO - Epoch(val) [12][11]

when I run demo/image_demo.py using custom checkpoint and custom config file, I got just original image(nothing changed)

Environment

sys.platform: linux Python: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0] CUDA available: True GPU 0: NVIDIA GeForce RTX 3080 Ti CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.1, V11.1.105 GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 PyTorch: 1.10.1+cu111 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel® Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel® 64 architecture applications
  • Intel® MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.11.2+cu111 OpenCV: 4.6.0 MMCV: 1.6.0 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 11.1 MMDetection: 2.25.0+ca11860

Additional information

No response

Issue Analytics

  • State:closed
  • Created a year ago
  • Comments:8

github_iconTop GitHub Comments

1reaction
wwcc1107commented, Nov 9, 2022

try to change lr and warmup to fix this problem

thank you very much,I check my datasets,it is a problem in data

0reactions
wwcc1107commented, Nov 29, 2022

it does not conform to the format specification of the standard COCO dataset

Read more comments on GitHub >

github_iconTop Results From Across the Web

Resourcepack Custom Models doesn't work : r/admincraft
Hi, a time ago i was creating some custom models for my Minecraft server, but something is wrong, and the Custom Models and...
Read more >
(Java 1.16.2)My custom model data didn't work with files I added
It can be turned on in the launcher in settings under general. Below is a video about custom model data you should probably...
Read more >
custom model for mob doesn't work - MCreator
I'm trying to make a mob with a custom model, which i've imported from blockbench. I'ts a .java file and it's selected for...
Read more >
Custom Item Model Isn't Working - Resource Pack Help
I am very VERY new to making resource packs and I am relatively clueless when it comes to making Custom Item Models.
Read more >
Custom Object Detection Model - My model doesn't work on ...
My model comes out with good accuracy after 100 epochs, however, when to detect the objects in a random image, nothing is detected....
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found