question-mark
Stuck on an issue?

Lightrun Answers was designed to reduce the constant googling that comes with debugging 3rd party libraries. It collects links to all the places you might be looking at while hunting down a tough bug.

And, if you’re still stuck at the end, we’re happy to hop on a call to see how we can help out.

[Reimplementation] YOLOX bbox pred using t,l,r,b format always produce loss_bbox: 5.0

See original GitHub issue

Prerequisite

💬 Describe the reimplementation questions

I replace _bbox_decode function in YOLOX like this:

    def _bbox_decode(self, priors, bbox_preds):
        tl_x = priors[..., 0] - bbox_preds[..., 0]
        tl_y = priors[..., 1] - bbox_preds[..., 1]
        br_x = priors[..., 0] + bbox_preds[..., 2]
        br_y = priors[..., 1] + bbox_preds[..., 3]
        return torch.stack([tl_x, tl_y, br_x, br_y], dim=-1)

My config:

_base_ = [
    '../configs/yolox/yolox_s_8x8_300e_coco.py'
]

# dataset settings
dataset_type = 'CocoDataset'
data_root = 'path'

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    _delete_=True,
    samples_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_minitrain2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline)
)
evaluation = dict(interval=1, metric='bbox')

# optimizer
optimizer = dict(_delete_=True, type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(_delete_=True, grad_clip=None)
# learning policy
lr_config = dict(
    _delete_=True,
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)

My result:

2022-10-25 09:29:29,856 - mmdet - INFO - Epoch [1][50/1564]	lr: 1.978e-03, eta: 1:15:21, time: 0.242, data_time: 0.070, memory: 10625, loss_cls: 0.9370, loss_bbox: 5.0000, loss_obj: 14.5174, loss: 20.4544
2022-10-25 09:29:38,077 - mmdet - INFO - Epoch [1][100/1564]	lr: 3.976e-03, eta: 1:03:09, time: 0.164, data_time: 0.019, memory: 10625, loss_cls: 0.7869, loss_bbox: 5.0000, loss_obj: 7.7109, loss: 13.4978
2022-10-25 09:29:47,287 - mmdet - INFO - Epoch [1][150/1564]	lr: 5.974e-03, eta: 1:01:02, time: 0.184, data_time: 0.018, memory: 10625, loss_cls: 0.6463, loss_bbox: 5.0000, loss_obj: 6.0049, loss: 11.6513
2022-10-25 09:29:55,211 - mmdet - INFO - Epoch [1][200/1564]	lr: 7.972e-03, eta: 0:57:55, time: 0.158, data_time: 0.019, memory: 10625, loss_cls: 0.5865, loss_bbox: 5.0000, loss_obj: 5.3746, loss: 10.9611
2022-10-25 09:30:03,355 - mmdet - INFO - Epoch [1][250/1564]	lr: 9.970e-03, eta: 0:56:15, time: 0.163, data_time: 0.019, memory: 10625, loss_cls: 0.3879, loss_bbox: 5.0000, loss_obj: 5.0617, loss: 10.4496
2022-10-25 09:30:12,697 - mmdet - INFO - Epoch [1][300/1564]	lr: 1.197e-02, eta: 0:56:20, time: 0.187, data_time: 0.017, memory: 10692, loss_cls: 0.3199, loss_bbox: 5.0000, loss_obj: 5.3904, loss: 10.7103

Environment

sys.platform: linux Python: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] CUDA available: True GPU 0,1: NVIDIA GeForce RTX 3090 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.8, V11.8.89 GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 PyTorch: 1.10.1 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel® oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel® 64 architecture applications
  • Intel® MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX512
  • CUDA Runtime 11.3
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  • CuDNN 8.2
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.11.2 OpenCV: 4.6.0 MMCV: 1.5.0 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 11.3 MMDetection: 2.25.1+1b4891c

Expected results

Normal YOLOX bbox pred, same config, different bbox_decode function:

2022-10-25 09:30:40,552 - mmdet - INFO - Epoch [1][50/1564]	lr: 1.978e-03, eta: 1:15:08, time: 0.241, data_time: 0.069, memory: 10627, loss_cls: 1.6528, loss_bbox: 4.7309, loss_obj: 12.7018, loss: 19.0855
2022-10-25 09:30:48,810 - mmdet - INFO - Epoch [1][100/1564]	lr: 3.976e-03, eta: 1:03:09, time: 0.165, data_time: 0.020, memory: 10627, loss_cls: 1.8888, loss_bbox: 4.4457, loss_obj: 5.9525, loss: 12.2871
2022-10-25 09:30:58,025 - mmdet - INFO - Epoch [1][150/1564]	lr: 5.974e-03, eta: 1:01:03, time: 0.184, data_time: 0.018, memory: 10627, loss_cls: 2.3753, loss_bbox: 4.0260, loss_obj: 5.8119, loss: 12.2131
2022-10-25 09:31:05,916 - mmdet - INFO - Epoch [1][200/1564]	lr: 7.972e-03, eta: 0:57:52, time: 0.158, data_time: 0.019, memory: 10627, loss_cls: 2.4342, loss_bbox: 3.9371, loss_obj: 5.5452, loss: 11.9165

Additional information

No response

Issue Analytics

  • State:open
  • Created a year ago
  • Comments:11

github_iconTop GitHub Comments

1reaction
iumyx2612commented, Oct 26, 2022

If this can be helpful, I wrote a script to visualize the label assignment process of simOTA.
I ran this on a test dataset here: https://public.roboflow.com/object-detection/synthetic-fruit
This is YOLOX using new _bbox_decode function, which decode like FCOS: iter 1:
49_jpg rf 003d87e7cc130a27308b3788502b8cf00

iter 11: 49_jpg rf 003d87e7cc130a27308b3788502b8cf010

iter 31: 49_jpg rf 003d87e7cc130a27308b3788502b8cf030

The bigger the dot, the higher the feature pyramid scale it belongs to (bigger stride)

And this is normal YOLOX with normal _bbox_decode:

iter 1: 49_jpg rf 003d87e7cc130a27308b3788502b8cf00

iter 11: 49_jpg rf 003d87e7cc130a27308b3788502b8cf010

iter 31: 49_jpg rf 003d87e7cc130a27308b3788502b8cf030

0reactions
iumyx2612commented, Nov 11, 2022

@hhaAndroid please notify me when you starting working on this 🙇‍♂️

Read more comments on GitHub >

github_iconTop Results From Across the Web

How to correctly format BBox predictions to feed into the NMS ...
I'm converting a YOLOX model, and have been able to match CoreML <-> PyTorch outputs match until just before the NMS layer. System...
Read more >

github_iconTop Related Medium Post

No results found

github_iconTop Related StackOverflow Question

No results found

github_iconTroubleshoot Live Code

Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free

github_iconTop Related Reddit Thread

No results found

github_iconTop Related Hackernoon Post

No results found

github_iconTop Related Tweet

No results found

github_iconTop Related Dev.to Post

No results found

github_iconTop Related Hashnode Post

No results found