my CenterPoint config for KITTI dataset
See original GitHub issueThis config file is modified from both official code released for KITTI and OpenPCDet version for WAYMO. And if anyone wants to get a pre-training model, please let me know. Update:
- 2022-06-30: I’ve uploaded the pre-trained model
centerpoint@KITTIto the Google Drive. It is available atPerformance and Modelssection in the repo
CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
MODEL:
NAME: CenterPoint
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelResBackBone8x
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5]
LAYER_STRIDES: [1]
NUM_FILTERS: [128]
UPSAMPLE_STRIDES: [2]
NUM_UPSAMPLE_FILTERS: [256]
DENSE_HEAD:
NAME: CenterHead
CLASS_AGNOSTIC: False
CLASS_NAMES_EACH_HEAD: [
[ 'Car', 'Pedestrian', 'Cyclist' ]
]
SHARED_CONV_CHANNEL: 64
USE_BIAS_BEFORE_NORM: True
NUM_HM_CONV: 2 # heatmap
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2}, # offset
'center_z': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 4
NUM_MAX_OBJS: 500
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
SCORE_THRESH: 0.1
POST_CENTER_LIMIT_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
MAX_OBJ_PER_SAMPLE: 500
NMS_CONFIG:
NMS_TYPE: nms_gpu
NMS_THRESH: 0.7
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.1
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS: False
NMS_TYPE: nms_gpu
NMS_THRESH: 0.01
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 4
NUM_EPOCHS: 80
OPTIMIZER: adam_onecycle
LR: 0.003
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10
Issue Analytics
- State:
- Created 2 years ago
- Reactions:6
- Comments:24 (7 by maintainers)
Top Results From Across the Web
The KITTI Vision Benchmark Suite - Andreas Geiger
2012: The KITTI Vision Benchmark Suite goes online, starting with the stereo, flow and odometry benchmarks. Privacy. This dataset is made available for...
Read more >CenterPoint-based 3D Object Detection in ONCE Dataset - DiVA
High-efficiency point cloud 3D object detection is important for autonomous driving. 3D object detection based on point cloud data is naturally more complex....
Read more >configs/centerpoint/README.md · master · manli / mmdetection3d ...
... on nuScenes dataset. We follow the below style to name config files. ... {dataset} : dataset like nus-3d, kitti-3d, lyft-3d, scannet-3d, sunrgbd-3d....
Read more >changelog.md - KEU-ComputerVision - Kitware GitLab
Fix an unsupported bias setting in the unit test for centerpoint head (#304) ... Preliminary release of API for SemanticKITTI dataset.
Read more >Offline Data Augmentation — TAO Toolkit 4.0 documentation
Contrast Config¶. This augmentation operator applies contrast scaling across a center point to an image. Parameter.
Read more >
Top Related Medium Post
No results found
Top Related StackOverflow Question
No results found
Troubleshoot Live Code
Lightrun enables developers to add logs, metrics and snapshots to live code - no restarts or redeploys required.
Start Free
Top Related Reddit Thread
No results found
Top Related Hackernoon Post
No results found
Top Related Tweet
No results found
Top Related Dev.to Post
No results found
Top Related Hashnode Post
No results found

Indeed, what you thought are approximately right about the
Backbone3D. But there is one thing you has ignored, i.e.,BEV_Backbone. Please kindly refer to configuration file that you can findUPSAMPLE_STRIDES: [2]in it, resulting in1/8 * 2 = 1/4here.you can set NMS_THRESH to 0.01 in MODEL.DENSE_HEAD.POST_PROCESSING config. Centerpoint model do nms in centerhead, so the config of MODEL.POST_PROCESSING is useless.